You are viewing an incomplete version of our website. Please click to reload the website as full version.

RFP-Booster (Atto 594)

Details for Product No. ABIN1082216, Supplier: Log in to see
Antigen
Reactivity
Discosoma
Antibody Type
Recombinant Antibody
Conjugate
Atto 594
Application
Fluorescence Microscopy (FM), Immunofluorescence (IF)
Supplier
Log in to see
Supplier Product No.
Log in to see
Request

Get this product for free

It's quick and easy to submit your validation proposal. I want to validate this product

Learn more

Available images

Purpose With our Booster you reactivate, boost, stabilizate the signals of your fusion proteins.
Specificity RFP-Booster efficiently highlights, enhancesand stabilizes monomeric red fluorescentproteins such as mRFP1, mCherry or mPlum but also mRuby
Characteristics
  • Enhance, stabilize and reactivate your fl uorescent proteins
  • RFP-Booster high specifi city for various monomeric red fl uorescent proteins derived from DsRed
  • Coupled to bright and photostable chemical dyes from ATTO-TEC
Components RFP-Trap® coupled to fluorescent dye ATTO 594
Alternative Name RFP
Background Red fluorescent proteins (RFP) and variants thereof are widely used to study protein localization and dynamics in living cells. However, photo stability and quantum efficiency of RFP are not sufficient for Super-Resolution Microscopy (e.g. 3D-SIM or STED) of fixed samples. In addition, many cell biological methods such as BrdU-staining, EdU-Click-iT™ treatment or Fluorescent In Situ Hybridization result in disruption of the RFP signal.The RFP-Booster_Atto594, a specific RFP-binding protein coupled to the fluorescent dye ATTO 594, reactivates, boosts and stabilizes your RFP signal.
Research Area Tags/Labels
Application Notes For the immunofluorescence staining of RFP-fusion proteins in fixed cells
Comment

Booster are very small, highly specific GFP- or RFP-binding proteins covalently coupled to the superior fluorescent dyes from ATTO-TEC.

Assay Procedure
  • 1. Fixation: 4% paraformaldehyde (PFA) or 1:10 formalin (37% formaldehyde, 10-15% MetOH) in PBS, 10 min., RT.
  • 2. Wash 3x with PBS containing 0.1% Tween 20 (PBST). Critical: do not let coverslips “dry”.
  • 3. Permeabilisation: PBS containing 0.5% Triton X-100, 5 min., RT. Alternatively, permeabilise by incubating in 100% methanol for 5 min at -20°C.
  • 4. Wash 2x with PBST.
  • 5. Blocking: 4% BSA in PBST, 10 min, RT.
  • 6. RFP-Booster incubation: dilute RFP-Booster 1:200 – 1:400 in blocking buffer and incubate 1 h, RT.
    Note: For multiplexing protocols you can combine RFP-Booster with any other antibody.
  • 7. Wash 3x 5-10 min in PBST.
  • 8. If required, counterstain with DNA fluorescent dyes, e.g. DAPI.
  • 9. Before mounting, coverslips can be very briefly rinsed in water to prevent salt crystals to form.
  • 10. Mount in VectaShield (Vector Labs) or other mounting media with anti-fading agents and seal mounted coverslips with clear nail polish.
Restrictions For Research Use only
Format Liquid
Concentration 0.2 mg/ml
Buffer PBS, 0.01% Sodium azide
Preservative Sodium azide
Precaution of Use This product contains sodium azide: a POISONOUS AND HAZARDOUS SUBSTANCE which should be handled by trained staff only.
Handling Advice Do not freeze. Protect from light.
Storage 4 °C
Expiry Date 6 months
Supplier Images
 image for RFP-Booster (Atto 594) (ABIN1082216) RFP-Booster specifically labels RFP-fusion proteins. HeLa cells expressing mRFP-PCNA,...
 image for RFP-Booster (Atto 594) (ABIN1082216) Enhancement of RFP signal with RFP-Booster_Atto594. Comparison of signal intensity of...
 image for RFP-Booster (Atto 594) (ABIN1082216) Improvement of RFP signal stability with RFP-Booster_Atto594. RFP fluorescence bleach...
Product cited in: Vietri, Schink, Campsteijn, Wegner, Schultz, Christ, Thoresen, Brech, Raiborg, Stenmark: "Spastin and ESCRT-III coordinate mitotic spindle disassembly and nuclear envelope sealing." in: Nature, Vol. 522, Issue 7555, pp. 231-5, 2015

Osterfield, Schüpbach, Wieschaus, Shvartsman: "Diversity of epithelial morphogenesis during eggshell formation in drosophilids." in: Development (Cambridge, England), Vol. 142, Issue 11, pp. 1971-7, 2015

Platonova, Winterflood, Junemann, Albrecht, Faix, Ewers: "Single-molecule microscopy of molecules tagged with GFP or RFP derivatives in mammalian cells using nanobody binders." in: Methods (San Diego, Calif.), 2015

Biermann, Sokoll, Klueva, Missler, Wiegert, Sibarita, Heine: "Imaging of molecular surface dynamics in brain slices using single-particle tracking." in: Nature communications, Vol. 5, pp. 3024, 2014

Bleck, Itano, Johnson, Thomas, North, Bieniasz, Simon: "Temporal and spatial organization of ESCRT protein recruitment during HIV-1 budding." in: Proceedings of the National Academy of Sciences of the United States of America, Vol. 111, Issue 33, pp. 12211-6, 2014

Winterflood, Ewers: "Single-Molecule Localization Microscopy using mCherry." in: Chemphyschem : a European journal of chemical physics and physical chemistry, Vol. 15, Issue 16, pp. 3447-51, 2014

Hasegawa, Ryu, Kaláb: "Chromosomal gain promotes formation of a steep RanGTP gradient that drives mitosis in aneuploid cells." in: The Journal of cell biology, Vol. 200, Issue 2, pp. 151-61, 2013

Franz, Roque, Saurya, Dobbelaere, Raff: "CP110 exhibits novel regulatory activities during centriole assembly in Drosophila." in: The Journal of cell biology, Vol. 203, Issue 5, pp. 785-99, 2013

Ridzuan, Moon, Knuepfer, Black, Holder, Green: "Subcellular location, phosphorylation and assembly into the motor complex of GAP45 during Plasmodium falciparum schizont development." in: PLoS ONE, Vol. 7, Issue 3, pp. e33845, 2012

Mikeladze-Dvali, von Tobel, Strnad, Knott, Leonhardt, Schermelleh, Gönczy: "Analysis of centriole elimination during C. elegans oogenesis." in: Development (Cambridge, England), Vol. 139, Issue 9, pp. 1670-9, 2012

Ries, Kaplan, Platonova, Eghlidi, Ewers: "A simple, versatile method for GFP-based super-resolution microscopy via nanobodies." in: Nature methods, Vol. 9, Issue 6, pp. 582-4, 2012

Weil, Parton, Herpers, Soetaert, Veenendaal, Xanthakis, Dobbie, Halstead, Hayashi, Rabouille, Davis: "Drosophila patterning is established by differential association of mRNAs with P bodies." in: Nature cell biology, Vol. 14, Issue 12, pp. 1305-13, 2012

Cordes, Maiser, Steinhauer, Schermelleh, Tinnefeld: "Mechanisms and advancement of antifading agents for fluorescence microscopy and single-molecule spectroscopy." in: Physical chemistry chemical physics : PCCP, Vol. 13, Issue 14, pp. 6699-709, 2011

Guizetti, Schermelleh, Mäntler, Maar, Poser, Leonhardt, Müller-Reichert, Gerlich: "Cortical constriction during abscission involves helices of ESCRT-III-dependent filaments." in: Science (New York, N.Y.), Vol. 331, Issue 6024, pp. 1616-20, 2011