You are viewing an incomplete version of our website. Please click to reload the website as full version.

Browse our Protein Kinase, CAMP-Dependent, Regulatory, Type II, beta Proteins (PRKAR2B)

Full name:
Protein Kinase, CAMP-Dependent, Regulatory, Type II, beta Proteins (PRKAR2B)
On www.antibodies-online.com are 6 Protein Kinase, CAMP-Dependent, Regulatory, Type II, beta (PRKAR2B) Proteins from 4 different suppliers available. Additionally we are shipping Protein Kinase, CAMP-Dependent, Regulatory, Type II, beta Antibodies (67) and Protein Kinase, CAMP-Dependent, Regulatory, Type II, beta Kits (1) and many more products for this protein. A total of 79 Protein Kinase, CAMP-Dependent, Regulatory, Type II, beta products are currently listed.
Synonyms:
AI451071, AW061005, MGC83177, Pkarb2, PKARIIbeta, PRKAR2, PRKAR2B, RATDNA, RII(beta), RII-BETA
list all proteins Gene Name GeneID UniProt
PRKAR2B 19088 P31324
PRKAR2B 24679 P12369
PRKAR2B 5577 P31323

Show all synonyms

Protein Kinase, CAMP-Dependent, Regulatory, Type II, beta Proteins (PRKAR2B) by Origin

Select your origin of interest

More Proteins for Protein Kinase, CAMP-Dependent, Regulatory, Type II, beta Interaction Partners

Mouse (Murine) Protein Kinase, CAMP-Dependent, Regulatory, Type II, beta (PRKAR2B) interaction partners

  1. RIIbeta-PKA modulates the duration of leptin receptor (show LEPR Proteins) signalling and therefore the magnitude of the catabolic response to leptin (show LEP Proteins).

  2. RIIBeta protein kinase A knockout was protective against induced seizure susceptibility.

  3. Deficiency of the RIIbeta subunit of PKA affects locomotor activity and energy homeostasis in distinct neuronal populations.

  4. study describes the 2.3 angstrom structure of full-length tetrameric RIIbeta(2):C(2) holoenzyme

  5. Conditioned taste aversion (CTA (show PCYT1A Proteins)) learning was examined in mice with a targeted disruption of a gene for a specific regulatory subunit of PKA (RIIbeta), which is selectively expressed in amygdala. Disruption of PKA signaling interferes with CTA (show PCYT1A Proteins).

  6. RII-PKAII complements TSHR (show TSHR Proteins) action by stably propagating robust cAMP signals in cell compartments

  7. Here we show that visual cortical plasticity remains intact in AC1 (show HRASLS Proteins)/AC8 (show ADCY8 Proteins)-/- mice, whereas Ocular dominance plasticity and LTD, but not LTP (show SCP2 Proteins), are absent in RIIbeta-/- mice

  8. Disruption of the RIIbeta regulatory subunit of protein kinase A (PKA) results in mice with a lean phenotype, nocturnal hyperactivity, and increased resting metabolic rate.

  9. increased ingestion of ethanol by protein kinase A(PKA) subunit RIIbeta(-/-) mice is likely the result of altered PKA activity within neuronal pathways that control ethanol-consummatory behaviors

  10. the RIIbeta gene mutation alters adiposity and locomotor activity by modifying PKA signaling pathways downstream of the agouti antagonism of MC4R (show MC4R Proteins) in the hypothalamus

Human Protein Kinase, CAMP-Dependent, Regulatory, Type II, beta (PRKAR2B) interaction partners

  1. Leu206Arg and Leu199_Cys200insTrp mutations in PRKACA (show PRKACA Proteins) impair its association with PRKAR2B and PRKAR1A (show PRKAR1A Proteins).

  2. Although the depletion of PRKAR1A (show PRKAR1A Proteins) and PRKAR2B in adrenocortical cells has similar effects on cell proliferation and apoptosis; loss of these PKA subunits differentially affects cyclin (show PCNA Proteins) expression.

  3. Because of limited power, PRKAR2B's role in antipsychotic-induced weight gain is unclear, but biological evidence suggests that PRKAR2B may be involved

  4. lipolytic catecholamine resistance of sc adipocytes in polycystic ovary syndrome is probably due to a combination of decreased amounts of beta(2)-adrenergic receptors, the regulatory II beta-component of protein kinase A, and hormone-sensitive lipase (show LIPE Proteins)

  5. Nuclear RII beta can act as a repressor of CREB (show CREB1 Proteins) transcriptional activity in T cells, providing a potential functional significance for aberrant levels of nuclear RII beta in systemic lupus erythematosus T cells.

  6. there are abnormalities in [3H]cAMP binding and catalytic activity kinase A in brain of depressed suicide victims, which could be due to reduced expression of RIIbeta and Cbeta

  7. serine 114 phosphorylation and nuclear localization of RIIbeta controls the regulation of IL-2 (show IL2 Proteins) gene expression in T cells.

  8. Loss of PRKAR2B protein due to a post-transcriptional mechanism in ACA-S is a new mechanism of cAMP pathway dysregulation in adrenocortical tumorigenesis.

  9. PKA RII(beta) is responsible for increased glucocorticoid sensitivity, critical for cAMP-mediated synergistic cell killing in CEM cells

  10. both the constitutive and cAMP-induced release of TNFR1 exosome-like vesicles occur via PKA-dependent pathways that are regulated by the anchoring of RIIbeta to BIG2 via AKAP domains B and C

Cow (Bovine) Protein Kinase, CAMP-Dependent, Regulatory, Type II, beta (PRKAR2B) interaction partners

  1. angle X-ray scattering studies indicate that the RIalpha (show PRKAR1A Proteins), RIIalpha, and RIIbeta homodimers differ markedly in overall shape, despite extensive sequence homology and similar molecular masses

Protein Kinase, CAMP-Dependent, Regulatory, Type II, beta (PRKAR2B) Protein Profile

Protein Summary

cAMP is a signaling molecule important for a variety of cellular functions. cAMP exerts its effects by activating the cAMP-dependent protein kinase, which transduces the signal through phosphorylation of different target proteins. The inactive kinase holoenzyme is a tetramer composed of two regulatory and two catalytic subunits. cAMP causes the dissociation of the inactive holoenzyme into a dimer of regulatory subunits bound to four cAMP and two free monomeric catalytic subunits. Four different regulatory subunits and three catalytic subunits have been identified in humans. The protein encoded by this gene is one of the regulatory subunits. This subunit can be phosphorylated by the activated catalytic subunit. This subunit has been shown to interact with and suppress the transcriptional activity of the cAMP responsive element binding protein 1 (CREB1) in activated T cells. Knockout studies in mice suggest that this subunit may play an important role in regulating energy balance and adiposity. The studies also suggest that this subunit may mediate the gene induction and cataleptic behavior induced by haloperidol.

Alternative names and synonyms associated with Protein Kinase, CAMP-Dependent, Regulatory, Type II, beta (PRKAR2B)

  • protein kinase, cAMP-dependent, regulatory, type II, beta (prkar2b)
  • protein kinase, cAMP-dependent, regulatory, type II, beta (PRKAR2B)
  • protein kinase, cAMP dependent regulatory, type II beta (Prkar2b)
  • AI451071 protein
  • AW061005 protein
  • MGC83177 protein
  • Pkarb2 protein
  • PKARIIbeta protein
  • PRKAR2 protein
  • PRKAR2B protein
  • RATDNA protein
  • RII(beta) protein
  • RII-BETA protein

Protein level used designations for PRKAR2B

protein kinase, cAMP-dependent, regulatory, type II, beta , cAMP-dependent protein kinase, regulatory subunit beta 2 , cAMP-dependent protein kinase type II-beta regulatory subunit-like , protein kinase, cAMP dependent regulatory, type II beta , cAMP-dependent protein kinase type II-beta regulatory subunit , Type II beta regulatory subunit of cAMP-dependent protein kinase , H_RG363E19.2 , WUGSC:H_RG363E19.2 , cAMP-dependent protein kinase type II-beta regulatory chain

GENE ID SPECIES
414594 Xenopus laevis
475887 Canis lupus familiaris
700770 Macaca mulatta
744011 Pan troglodytes
769420 Gallus gallus
100010130 Monodelphis domestica
100394872 Callithrix jacchus
100500720 Ovis aries
100519615 Sus scrofa
100561641 Anolis carolinensis
100597337 Nomascus leucogenys
19088 Mus musculus
24679 Rattus norvegicus
5577 Homo sapiens
282463 Bos taurus
Selected quality suppliers for Protein Kinase, CAMP-Dependent, Regulatory, Type II, beta Proteins (PRKAR2B)
Did you look for something else?