Parkinson Protein 2, E3 Ubiquitin Protein Ligase (Parkin) Proteins (PARK2)

The precise function of PARK2 is unknown\; however, the encoded protein is a component of a multiprotein E3 ubiquitin ligase complex that mediates the targeting of substrate proteins for proteasomal degradation. Additionally we are shipping PARK2 Antibodies (193) and PARK2 Kits (22) and many more products for this protein.

list all proteins Gene Name GeneID UniProt
PARK2 5071 O60260
PARK2 56816 Q9JK66
PARK2 50873 Q9WVS6
How to order from antibodies-online
  • +1 877 302 8632
  • +1 888 205 9894 (toll-free)
  • Order online
  • orders@antibodies-online.com

Top PARK2 Proteins at antibodies-online.com

Showing 10 out of 12 products:

Catalog No. Origin Source Conjugate Images Quantity Supplier Delivery Price Details
Insect Cells Human His tag „Crystallography Grade“ protein due to multi-step, protein-specific purification process 1 mg Log in to see 60 Days
$9,797.11
Details
Insect Cells Mouse His tag „Crystallography Grade“ protein due to multi-step, protein-specific purification process 1 mg Log in to see 60 Days
$9,797.11
Details
Escherichia coli (E. coli) Human His tag 100 μg Log in to see 13 to 16 Days
$400.00
Details
Wheat germ Human GST tag 10 μg Log in to see 11 to 12 Days
$414.29
Details
Yeast Rat His tag   1 mg Log in to see 60 to 71 Days
$3,309.17
Details
Insect cells (Sf21) Human Un-conjugated   25 μg Log in to see 5 to 8 Days
$989.00
Details
Escherichia coli (E. coli) Human S tag,His tag 100 μg Log in to see 15 to 18 Days
$624.00
Details
Escherichia coli (E. coli) Human His tag   10 μg Log in to see 15 to 16 Days
$225.00
Details
Escherichia coli (E. coli) Human Un-conjugated   5 applications Log in to see 1 to 2 Days
$318.85
Details
Baculovirus infected Insect Cells Human GST tag   50 μg Log in to see 10 to 12 Days
$624.55
Details

PARK2 Proteins by Origin and Source

Origin Expressed in Conjugate
Human , , , ,
, ,
Rat (Rattus)

Mouse (Murine)

More Proteins for Parkinson Protein 2, E3 Ubiquitin Protein Ligase (Parkin) (PARK2) Interaction Partners

Fruit Fly (Drosophila melanogaster) Parkinson Protein 2, E3 Ubiquitin Protein Ligase (Parkin) (PARK2) interaction partners

  1. Loss of parkin is associated with nuclear clustering and morphology defects in larval muscles and thus developing aortic aneurysms.

  2. This study found learning and memory abnormalities in Parkin mutant genotypes in Drosophila.

  3. parkin mutants have a longer lifespan when fed the 1:16 P:C compared to those fed the 1:2 P:C diet. Parkin mutants fed the 1:16 P:C diet have delayed climbing deficit, increased resistance to starvation. Mutant flies fed the 1:16 P:C diet also have improved mitochondrial functions as evidenced by increased respiratory control ratio

  4. Drosophila CHIP protects against mitochondrial dysfunction by acting downstream of Pink1 (show PINK1 Proteins) in parallel with Parkin

  5. Maintenance of tissue homeostasis upon reduction of Pink1 (show PINK1 Proteins) or Parkin appears to result from reduction of age- and stress-induced intestinal stem cell proliferation, in part, through induction of ISC senescence.

  6. activation of endoplasmic reticulum stress by defective mitochondria is neurotoxic in pink1 (show PINK1 Proteins) and parkin flies and that the reduction of this signalling is neuroprotective, independently of defective mitochondria.

  7. Pharmacological or genetic activation of heat shock protein 70 (Hsp70) protects against loss of parkin Function. Heat shock protein members may act as compensatory factors for parkin loss of function and that the exploitation of these factors may be of potential therapeutic value.

  8. autophosphorylation of PINK1 (show PINK1 Proteins) is essential for the mitochondrial translocation of Parkin and for subsequent phosphorylation and activation of Parkin.

  9. Our data indicate that PINK1 (show PINK1 Proteins) and Parkin play an important role in FUS (show FUS Proteins)-induced neurodegeneration. This study has uncovered a previously unknown link between FUS (show FUS Proteins) proteinopathy and PINK1 (show PINK1 Proteins)/Parkin genes, providing new insights into the pathogenesis of FUS (show FUS Proteins) proteinopathy.

  10. Clu (show CLU Proteins) is upstream of and binds to VCP (show vcp Proteins) in vivo and promotes VCP (show vcp Proteins)-dependent Marf (show MFN2 Proteins) degradation in vitro Marf (show MFN2 Proteins) accumulates in whole muscle lysates of clu (show CLU Proteins)-deficient flies and is destabilized upon Clu (show CLU Proteins) overexpression. Thus, Clu (show CLU Proteins) is essential for mitochondrial homeostasis and functions in concert with Parkin and VCP (show vcp Proteins) for Marf (show MFN2 Proteins) degradation to promote damaged mitochondrial clearance.

Human Parkinson Protein 2, E3 Ubiquitin Protein Ligase (Parkin) (PARK2) interaction partners

  1. The results demonstrate that Nix (show BNIP3L Proteins) can serve as an alternative mediator of mitophagy to maintain mitochondrial turnover, identifying Nix (show BNIP3L Proteins) as a promising target for neuroprotective treatment in PINK1 (show PINK1 Proteins)/Parkin-related Parkinson's disease.

  2. Female patients with PARK2 polymorphism had significantly higher risk of VTE recurrence

  3. Studies indicate a functional PTEN-induced putative kinase 1)(PINK1 (show PINK1 Proteins))/E3 ubiquitin protein ligase (parkin) mitophagy pathway in neurons [Review].

  4. parkin deficiency induces synaptotagmin-11 (show SYT11 Proteins) accumulation and PD-like neurotoxicity in mouse models, which is reversed by SYT11 (show SYT11 Proteins) knockdown in the SNpc or knockout of SYT11 (show SYT11 Proteins) restricted to dopaminergic neuron

  5. Parkin expression is inversely correlated with HIF-1alpha (show HIF1A Proteins) expression and metastasis in breast cancer. Results reveal an important mechanism for Parkin in tumor suppression and HIF-1alpha (show HIF1A Proteins) regulation.

  6. mitochondrial dysfunction activates the PINK1 (show PINK1 Proteins)/Parkin signaling and mitophagy in renal tubular epithelial cells under albumin (show ALB Proteins) overload condition.

  7. The authors demonstrate that RABGEF1 (show RABGEF1 Proteins), the upstream factor of the endosomal Rab GTPase (show RAB6A Proteins) cascade, is recruited to damaged mitochondria via ubiquitin binding downstream of Parkin. RABGEF1 (show RABGEF1 Proteins) directs the downstream Rab (show HRB Proteins) proteins, RAB5 (show RAB5A Proteins) and RAB7A (show RAB7A Proteins), to damaged mitochondria, whose associations are further regulated by mitochondrial Rab (show HRB Proteins)-GAPs.

  8. DNAJ (show DNAJB6 Proteins) proteins keep Parkin C289G mutant protein in a soluble, degradation-competent form.

  9. S-nitrosylated PINK1 (show PINK1 Proteins) decreases Parkin translocation to mitochondrial membranes

  10. Parkinsonism associated with Parkin gene mutation is one of the most common familial forms of Parkinson Disease, which is characterized by early onset of symptoms, slow progression, elective dopaminergic neuronal loss and the absence of Lewy bodies.

Zebrafish Parkinson Protein 2, E3 Ubiquitin Protein Ligase (Parkin) (PARK2) interaction partners

  1. Melatonin, added together with MPTP (show PTPN2 Proteins) or added once MPTP (show PTPN2 Proteins) was removed, prevented and recovered, respectively, the parkinsonian phenotype once it was established, restoring gene expression and normal function of the parkin/PINK1 (show PINK1 Proteins)/DJ-1 (show PARK7 Proteins)/MUL1 loop and also the normal motor activity of the embryos.

Pig (Porcine) Parkinson Protein 2, E3 Ubiquitin Protein Ligase (Parkin) (PARK2) interaction partners

  1. Single nucleotide polymorphism (SNP) analysis revealed seven SNPs in the porcine PARK2 gene, one missense and one silent mutation in exon 7 and five SNPs in intron 7

Mouse (Murine) Parkinson Protein 2, E3 Ubiquitin Protein Ligase (Parkin) (PARK2) interaction partners

  1. data suggested that suppressed Sirt3 (show SIRT3 Proteins)-Foxo3A (show FOXO3 Proteins)-Parkin signaling mediated downregulation of mitophagy may play a vital role in the development of diabetic cardiomyopathy.

  2. Overexpression of parkin resulted in a significant reduction of total-eNOS (show NOS3 Proteins) and p-eNOS (show NOS3 Proteins) in parallel with the downregulation of ERRalpha (show ESRRA Proteins) (a regulator of eNOS (show NOS3 Proteins)) protein and the enhancement of ERRalpha (show ESRRA Proteins) ubiquitination.

  3. Parkin mice carrying a deletion in exon 3 display impairments in the main pathway responsible for maintaining BH4 levels in the CNS, an essential cofactor for dopamine synthesis, under inflammatory conditions. Concomitant to this alteration, striatum cells do not upregulate BDNF (show BDNF Proteins) to confer neuroprotection in LPS (show TLR4 Proteins)-exposed mice, displaying an increased number of mitochondria of smaller size with perinuclear clustering.

  4. the results indicate that PICK1 (show PICK1 Proteins) is a potent inhibitor of Parkin, and the reduction of PICK1 (show PICK1 Proteins) enhances the protective effect of Parkin.

  5. PINK1 (show PINK1 Proteins) and PARK2 suppress pancreatic tumorigenesis through control of mitochondrial iron-mediated immunometabolism

  6. When fed with iron-supplemented diet, DMT1 (show SLC11A2 Proteins)-expressing mice exhibit rather selective accumulation of iron in the substantia nigra but otherwise seem normal. Parkin expression is also enhanced, likely as a neuroprotective response. When DMT1 (show SLC11A2 Proteins) is overexpressed against a Parkin null background, the double-mutant mice similarly resisted a disease phenotype when fed with iron or manganese, but greater susceptibility to 6-OHDA.

  7. Bnip3l (show BNIP3L Proteins) knockout (bnip3l (show BNIP3L Proteins)(-/-)) impaired mitophagy and aggravated cerebral I-R (ischemia-reperfusion) injury in mice, which can be rescued by BNIP3L (show BNIP3L Proteins) overexpression. The rescuing effects of BNIP3L (show BNIP3L Proteins) overexpression can be observed in park2(-/-) mice, which showed mitophagy deficiency after I-R.

  8. Parkin acts as a regulator of microtubule system during neuronal aging.

  9. The expression of PINK1 (show PINK1 Proteins) and Parkin were elevated in white adipose tissue in obese mice.

  10. crossed Parkin knockouts to the Twinkle-TG mouse in which mtDNA deletions are increased specifically in substantia nigra to determine the effect of increased deletion mutagenesis in the absence of mitochondrial quality control

PARK2 Protein Profile

Protein Summary

The precise function of this gene is unknown\; however, the encoded protein is a component of a multiprotein E3 ubiquitin ligase complex that mediates the targeting of substrate proteins for proteasomal degradation. Mutations in this gene are known to cause Parkinson disease and autosomal recessive juvenile Parkinson disease. Alternative splicing of this gene produces multiple transcript variants encoding distinct isoforms. Additional splice variants of this gene have been described but currently lack transcript support.

Gene names and symbols associated with PARK2

  • parkin (park)
  • parkin RBR E3 ubiquitin protein ligase (PRKN)
  • parkin RBR E3 ubiquitin protein ligase (Prkn)
  • parkin RBR E3 ubiquitin protein ligase (prkn)
  • parkin (CpipJ_CPIJ014867)
  • Parkinson disease (autosomal recessive, juvenile) 2, parkin (Park2)
  • AR-JP protein
  • CG10523 protein
  • Dmel\\CG10523 protein
  • Dpark protein
  • dpk protein
  • LPRS2 protein
  • Park protein
  • PARK2 protein
  • PDJ protein
  • pdr-1 protein
  • Prkn protein
  • SD01679 protein
  • si:ch211-123f21.1 protein
  • zgc:112390 protein

Protein level used designations for PARK2

CG10523-PB , CG10523-PC , D-parkin , dparkin , park-PB , park-PC , E3 ubiquitin-protein ligase parkin , Parkinson disease (autosomal recessive, juvenile) 2, parkin , parkinson juvenile disease protein 2 , parkin variant SV5DEL , parkin , parkin protein , parkinson protein 2, E3 ubiquitin protein ligase (parkin)

GENE ID SPECIES
40336 Drosophila melanogaster
5071 Homo sapiens
56816 Rattus norvegicus
550328 Danio rerio
733673 Sus scrofa
741350 Pan troglodytes
6049109 Culex quinquefasciatus
50873 Mus musculus
612316 Canis lupus familiaris
100724550 Cavia porcellus
530858 Bos taurus
Selected quality suppliers for PARK2 Proteins (PARK2)
Did you look for something else?