Phone:
+1 877 302 8632
Fax:
+1 888 205 9894 (Toll-free)
E-Mail:
orders@antibodies-online.com

CD8 alpha antibody

CD8A Reactivity: Mouse FACS, IP, IHC (fro), Func, BR, IHC (f), IHC (zinc) Host: Rat Monoclonal 53-6-7 unconjugated
Catalog No. ABIN1177008
  • Target See all CD8 alpha (CD8A) Antibodies
    CD8 alpha (CD8A) (CD8a Molecule (CD8A))
    Reactivity
    • 192
    • 119
    • 40
    • 37
    • 11
    • 7
    • 3
    • 2
    • 2
    • 2
    • 2
    • 2
    • 2
    • 2
    • 2
    • 1
    • 1
    Mouse
    Host
    • 144
    • 129
    • 100
    • 1
    Rat
    Clonality
    • 270
    • 100
    • 1
    Monoclonal
    Conjugate
    • 131
    • 43
    • 30
    • 26
    • 25
    • 8
    • 6
    • 6
    • 6
    • 6
    • 5
    • 5
    • 5
    • 4
    • 4
    • 4
    • 4
    • 3
    • 3
    • 3
    • 2
    • 2
    • 2
    • 2
    • 2
    • 2
    • 2
    • 2
    • 2
    • 2
    • 2
    • 2
    • 2
    • 2
    • 2
    • 2
    • 2
    • 1
    • 1
    • 1
    • 1
    • 1
    • 1
    • 1
    • 1
    • 1
    • 1
    • 1
    • 1
    • 1
    This CD8 alpha antibody is un-conjugated
    Application
    • 288
    • 105
    • 92
    • 66
    • 54
    • 46
    • 42
    • 24
    • 15
    • 15
    • 14
    • 9
    • 8
    • 7
    • 6
    • 6
    • 6
    • 5
    • 3
    • 3
    • 2
    • 2
    • 1
    • 1
    • 1
    • 1
    • 1
    • 1
    Flow Cytometry (FACS), Immunoprecipitation (IP), Immunohistochemistry (Frozen Sections) (IHC (fro)), Functional Studies (Func), Blocking Reagent (BR), Immunohistochemistry (Formalin-fixed Sections) (IHC (f)), Immunohistochemistry (Zinc-fixed Sections) (IHC (zinc))
    Brand
    BD Pharmingen™
    Purification
    The monoclonal antibody was purified from tissue culture supernatant or ascites by affinity chromatography.
    Sterility
    0.2 μm filtered
    Endotoxin Level
    Endotoxin level is ≤ 0.01 EU/μg (≤ 0.001 ng/μg) of protein as determined by the LAL assay.
    Immunogen
    Mouse thymus / spleen Cells
    Clone
    53-6-7
    Isotype
    IgG2a kappa
    Top Product
    Discover our top product CD8A Primary Antibody
  • Restrictions
    For Research Use only
  • Format
    Liquid
    Concentration
    1.0 mg/mL
    Buffer
    No azide/low endotoxin: Aqueous buffered solution containing no preservative, 0.2μm sterile filtered.
    Preservative
    Azide free
    Storage
    4 °C
    Storage Comment
    Store undiluted at 4°C. This preparation contains no preservatives, thus it should be handled under aseptic conditions.
  • Leishman, Naidenko, Attinger, Koning, Lena, Xiong, Chang, Reinherz, Kronenberg, Cheroutre: "T cell responses modulated through interaction between CD8alphaalpha and the nonclassical MHC class I molecule, TL." in: Science (New York, N.Y.), Vol. 294, Issue 5548, pp. 1936-9, (2001) (PubMed).

    Traver, Akashi, Manz, Merad, Miyamoto, Engleman, Weissman: "Development of CD8alpha-positive dendritic cells from a common myeloid progenitor." in: Science (New York, N.Y.), Vol. 290, Issue 5499, pp. 2152-4, (2000) (PubMed).

    Mitnacht, Bischof, Torres-Nagel, Hünig: "Opposite CD4/CD8 lineage decisions of CD4+8+ mouse and rat thymocytes to equivalent triggering signals: correlation with thymic expression of a truncated CD8 alpha chain in mice but not rats." in: Journal of immunology (Baltimore, Md. : 1950), Vol. 160, Issue 2, pp. 700-7, (1998) (PubMed).

    Negm, Mansour, Saad, Abdel Halim: "Structural characterization of an Lyt-2/3 homolog expressed on Bufo regularis lymphocytes." in: Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology, Vol. 113, Issue 1, pp. 79-87, (1997) (PubMed).

    Anel, ORourke, Kleinfeld, Mescher: "T cell receptor and CD8-dependent tyrosine phosphorylation events in cytotoxic T lymphocytes: activation of p56lck by CD8 binding to class I protein." in: European journal of immunology, Vol. 26, Issue 10, pp. 2310-9, (1996) (PubMed).

    Alexander-Miller, Leggatt, Sarin, Berzofsky: "Role of antigen, CD8, and cytotoxic T lymphocyte (CTL) avidity in high dose antigen induction of apoptosis of effector CTL." in: The Journal of experimental medicine, Vol. 184, Issue 2, pp. 485-92, (1996) (PubMed).

    Fujiura, Kawaguchi, Kondo, Obana, Yamamoto, Nanno, Ishikawa: "Development of CD8 alpha alpha+ intestinal intraepithelial T cells in beta 2-microglobulin- and/or TAP1-deficient mice." in: Journal of immunology (Baltimore, Md. : 1950), Vol. 156, Issue 8, pp. 2710-5, (1996) (PubMed).

    Sydora, Brossay, Hagenbaugh, Kronenberg, Cheroutre: "TAP-independent selection of CD8+ intestinal intraepithelial lymphocytes." in: Journal of immunology (Baltimore, Md. : 1950), Vol. 156, Issue 11, pp. 4209-16, (1996) (PubMed).

    Zamoyska: "The CD8 coreceptor revisited: one chain good, two chains better." in: Immunity, Vol. 1, Issue 4, pp. 243-6, (1995) (PubMed).

    Nakayama, Nakayama, Negishi, Kuida, Louie, Kanagawa, Nakauchi, Loh: "Requirement for CD8 beta chain in positive selection of CD8-lineage T cells." in: Science (New York, N.Y.), Vol. 263, Issue 5150, pp. 1131-3, (1994) (PubMed).

    Wang, Klein: "Thymus-neuroendocrine interactions in extrathymic T cell development." in: Science (New York, N.Y.), Vol. 265, Issue 5180, pp. 1860-2, (1994) (PubMed).

    ORourke, Mescher: "The roles of CD8 in cytotoxic T lymphocyte function." in: Immunology today, Vol. 14, Issue 4, pp. 183-8, (1993) (PubMed).

    Janeway: "The T cell receptor as a multicomponent signalling machine: CD4/CD8 coreceptors and CD45 in T cell activation." in: Annual review of immunology, Vol. 10, pp. 645-74, (1992) (PubMed).

    Lefrançois: "Extrathymic differentiation of intraepithelial lymphocytes: generation of a separate and unequal T-cell repertoire?" in: Immunology today, Vol. 12, Issue 12, pp. 436-8, (1992) (PubMed).

    Murosaki, Yoshikai, Ishida, Nakamura, Matsuzaki, Takimoto, Yuuki, Nomoto: "Failure of T cell receptor V beta negative selection in murine intestinal intra-epithelial lymphocytes." in: International immunology, Vol. 3, Issue 10, pp. 1005-13, (1992) (PubMed).

    Takahashi, Nakata, Tanaka, Adachi, Nakauchi, Yagita, Okumura: "CD4 and CD8 regulate interleukin 2 responses of T cells." in: Proceedings of the National Academy of Sciences of the United States of America, Vol. 89, Issue 12, pp. 5557-61, (1992) (PubMed).

    MacDonald, Schreyer, Howe, Bron: "Selective expression of CD8 alpha (Ly-2) subunit on activated thymic gamma/delta cells." in: European journal of immunology, Vol. 20, Issue 4, pp. 927-30, (1990) (PubMed).

    Bierer, Sleckman, Ratnofsky, Burakoff: "The biologic roles of CD2, CD4, and CD8 in T-cell activation." in: Annual review of immunology, Vol. 7, pp. 579-99, (1989) (PubMed).

    Zamoyska, Derham, Gorman, von Hoegen, Bolen, Veillette, Parnes: "Inability of CD8 alpha' polypeptides to associate with p56lck correlates with impaired function in vitro and lack of expression in vivo." in: Nature, Vol. 342, Issue 6247, pp. 278-81, (1989) (PubMed).

    Zamoyska, Vollmer, Sizer, Liaw, Parnes: "Two Lyt-2 polypeptides arise from a single gene by alternative splicing patterns of mRNA." in: Cell, Vol. 43, Issue 1, pp. 153-63, (1986) (PubMed).

  • Target
    CD8 alpha (CD8A) (CD8a Molecule (CD8A))
    Alternative Name
    CD8a (CD8A Products)
    Synonyms
    cd8 antibody, LOC100136450 antibody, BB154331 antibody, Ly-2 antibody, Ly-35 antibody, Ly-B antibody, Lyt-2 antibody, zgc:136643 antibody, CD8 antibody, Leu2 antibody, MAL antibody, p32 antibody, RHACD8-4 antibody, CD8a molecule antibody, uncharacterized LOC100125537 antibody, CD8 alpha antibody, CD8 antigen, alpha chain antibody, T-cell surface glycoprotein CD8 alpha chain antibody, Cd8a antibody, LOC100125537 antibody, LOC100136450 antibody, CD8A antibody, cd8a antibody, LOC100126556 antibody
    Background
    The 53-6.7 antibody has been reported to react with the 38 kDa alpha and 34 kDa alpha' chains of the CD8 differentiation antigen (Ly-2 or Lyt-2) of all mouse strains tested. The CD8 alpha and alpha' chains (CD8a) form heterodimers with the CD8 beta chain (CD8b, Ly-3, or Lyt-3) on the surface of most thymocytes. A subpopulation of mature T lymphocytes (i.e., MHC class I-restricted T cells, including most T suppressor/cytotoxic cells) expresses almost exclusively the CD8 alphabeta heterodimer (the alpha' chain is absent). Subsets of gammadelta TCR-bearing T cells, intestinal intrapithelial lymphocytes, and dendritic cells express CD8a without CD8b. It has been suggested that the expression of the CD8a/CD8b heterodimer is restricted to T lymphocytes which matured in the thymus or in an extrathymic environment that had been influenced by thymus-initiated neuroendocrine signals. CD8 is an antigen coreceptor on the T-cell surface which interacts with MHC class I molecules on antigen-presenting cells or epithelial cells. It participates in T-cell activation through its association with the T-cell receptor complex and protein tyrosine kinase lck (p56 [lck]). The CD8 alpha and alpha' chains arise from alternatively spliced messengers of a single CD8a gene. The longer alpha form associates with p56 [lck] via a CXCP motif in its cytoplasmic domain, which it shares with CD4, but not with CD8b. The truncated alpha' chain is unable to associate with p56 [lck], and it may function to attenuate the CD8-mediated costimulatory signal during intrathymic T-cell maturation. In vivo and in vitro treatment with 53-6.7 mAb has reportedly been effective at depleting CD8+ peripheral T lymphocytes. The 53-6.7 antibody has also been reported to cross-reaact with CD8 alpha- and alpha'-like polypeptides on subsets of thymic and peripheral lymphocytes in the Egyptian toad, Bufo regularis.
    Synonyms: Ly-2, Lyt-2
    Pathways
    TCR Signaling
You are here:
Support