Phone:
+1 877 302 8632
Fax:
+1 888 205 9894 (Toll-free)
E-Mail:
orders@antibodies-online.com

NPY ELISA Kit

NPY Reactivity: Human Colorimetric Sandwich ELISA 78-5000 pg/mL Cell Culture Supernatant, Plasma, Serum
Catalog No. ABIN455984
  • Target See all NPY ELISA Kits
    NPY (Neuropeptide Y (NPY))
    Reactivity
    • 4
    • 4
    • 3
    • 3
    • 2
    • 2
    • 1
    • 1
    • 1
    • 1
    • 1
    • 1
    Human
    Detection Method
    Colorimetric
    Method Type
    Sandwich ELISA
    Detection Range
    78-5000 pg/mL
    Minimum Detection Limit
    78 pg/mL
    Application
    ELISA
    Purpose
    This immunoassay kit allows for the specific measurement of Human neuropeptide gamma,NP-gamma concentrations in cell culture supernates, serum, and plasma.
    Sample Type
    Cell Culture Supernatant, Serum, Plasma
    Analytical Method
    Quantitative
    Specificity
    This assay recognizes natural Human NP-gamma.
    Cross-Reactivity (Details)
    No significant cross-reactivity or interference was observed.
    Sensitivity
    < 0.18 ng/mL
    The sensitivity of this assay, or Lower Limit of Detection (LLD) was defined as the lowest detectable concentration that could be differentiated from zero.
    Characteristics
    Homo sapiens,Human,Pro-neuropeptide Y,NPY
    Components
    Reagent (Quantity): Assay plate (1), Standard (2), Sample Diluent (1x20ml), Assay Diluent A (1x10ml), Assay Diluent B (1x10ml), Detection Reagent A (1x120µl), Detection Reagent B (1x120µl), Wash Buffer(25 x concentrate) (1x30ml), Substrate (1x10ml), Stop Solution (1x10ml)
    Featured
    Discover our best selling NPY ELISA Kit
    Top Product
    Discover our top product NPY ELISA Kit
  • Sample Volume
    100 μL
    Plate
    Pre-coated
    Protocol
    This assay employs the quantitative sandwich enzyme immunoassay technique. A monoclonal antibody specific for NP-gamma has been pre-coated onto a microplate. Standards and samples are pipetted into the wells and any NP-gamma present is bound by the immobilized antibody. An enzyme-linked polyclonal antibody specific for NP-gamma is added to the wells. Following a wash to remove any unbound antibody-enzyme reagent, a substrate solution is added to the wells and color develops in proportion to the amount of NP-gamma bound in the initial step. The color development is 2 stopped and the intensity of the color is measured.
    Reagent Preparation

    Bring all reagents to room temperature before use. Wash Buffer - If crystals have formed in the concentrate, warm to room temperature and mix gently until the crystals have completely dissolved. Dilute 20 mL of Wash Buffer Concentrate into deionized or distilled water to prepare 500 mL of Wash Buffer. Standard - Reconstitute the Standard with 1.0 mL of Sample Diluent. This reconstitution produces a stock solution of 50 ng/mL. Allow the standard to sit for a minimum of 15 minutes 3 with gentle agitation prior to making serial dilutions. The undiluted standard serves as the high standard (50 ng/mL). The Sample Diluent serves as the zero standard (0 ng/mL). Detection Reagent A and B - Dilute to the working concentration specified on the vial label using Assay Diluent A and B (1:100), respectively.

    Sample Collection
    Cell culture supernates - Remove particulates by centrifugation and assay immediately or aliquot and store samples at ≤ -20 °C. Avoid repeated freeze-thaw cycles. Serum - Use a serum separator tube (SST) and allow samples to clot for 30 minutes before centrifugation for 15 minutes at approximately 1000 x g. Remove serum and assay immediately or aliquot and store samples at -20 °C. Plasma - Collect plasma using EDTA or heparin as an anticoagulant. Centrifuge samples for 15 minutes at 1000 x g at 2 - 8 °C within 30 minutes of collection. Store samples at ≤ -20 °C. Avoid repeated freeze-thaw cycles. Note: Citrate plasma has not been validated for use in this assay.
    Assay Procedure

    Allow all reagents to reach room temperature. Arrange and label required number of strips.
    1. Prepare all reagents, working standards and samples as directed in the previous sections.
    2. Add 100 uL of Standard, Control, or sample per well. Cover with the adhesive strip. Incubate for 2 hours at 37 °C.
    3. Remove the liquid of each well, don’t wash.
    4. Add 100 uL of Detection Reagent A to each well. Incubate for 1 hour at 37°C. Detection Reagent A may appear cloudy. Warm to room temperature and mix gently until solution appears uniform.
    5. Aspirate each well and wash, repeating the process three times for a total of three washes. Wash by filling each well with Wash Buffer (350 uL) using a squirt bottle, multi-channel pipette, manifold dispenser or autowasher. Complete removal of liquid at each step is essential to good performance. After the last wash, remove any remaining Wash Buffer by aspirating or decanting. Invert the plate and blot it against clean paper towels.
    6. Add 100 uL of Detection Reagent B to each well. Cover with a new adhesive strip.Incubate for 1 hours at 37 °C.
    7. Repeat the aspiration/wash as in step
    5. 8. Add 90 uL of Substrate Solution to each well. Incubate for 30 minutes at room temperature. Protect from light.
    9. Add 50 uL of Stop Solution to each well. If color change does not appear uniform, gently tap the plate to ensure thorough mixing.
    10. Determine the optical density of each well within 30 minutes, using a microplate reader set to 450 nm.
    Important Note:
    1. The wash procedure is critical. Insufficient washing will result in poor precision and falsely 4 elevated absorbance readings.
    2. It is recommended that no more than 32 wells be used for each assay run if manual pipetting is used since pipetting of all standards, specimens and controls should be completed within 5 minutes. A full plate of 96 wells may be used if automated pipetting is available.
    3. Duplication of all standards and specimens, although not required, is recommended.
    4. When mixing or reconstituting protein solutions, always avoid foaming.
    5. To avoid cross-contamination, change pipette tips between additions of each standard level, between sample additions, and between reagent additions. Also, use separate reservoirs for each reagent.
    6. To ensure accurate results, proper adhesion of plate sealers during incubation steps is necessary.

    Calculation of Results

    Average the duplicate readings for each standard, control, and sample and subtract the average zero standard optical density. Create a standard curve by reducing the data using computer software capable of generating a four parameter logistic (4-PL) curve-fit. As an alternative, construct a standard curve by plotting the mean absorbance for each standard on the y-axis against the concentration on the x-axis and draw a best fit curve through the points on the graph. The data may be linearized by plotting the log of the NP-gamma concentrations versus the log of the O.D. and the best fit line can be determined by regression analysis. This procedure will produce an adequate but less precise fit of the data. If samples have been diluted, the concentration read from the standard curve must be multiplied by the dilution factor.

    Restrictions
    For Research Use only
  • Handling Advice
    1. The kit should not be used beyond the expiration date on the kit label.
    2. Do not mix or substitute reagents with those from other lots or sources.
    3. If samples generate values higher than the highest standard, further dilute the samples with the Assay Diluent and repeat the assay. Any variation in standard diluent, operator, pipetting technique, washing technique,incubation time or temperature, and kit age can cause variation in binding.
    4. This assay is designed to eliminate interference by soluble receptors, ligands, binding proteins, and other factors present in biological samples. Until all factors have been tested in the Immunoassay, the possibility of interference cannot be excluded.
    Storage
    4 °C/-20 °C
    Storage Comment
    The Standard, Detection Reagent A, Detection Reagent B and the 96-well strip plate should be stored at -20 °C upon being received. The other reagents can be stored at 4 °C.
  • Target See all NPY ELISA Kits
    NPY (Neuropeptide Y (NPY))
    Alternative Name
    NPY (NPY Products)
    Synonyms
    0710005A05Rik ELISA Kit, PYY4 ELISA Kit, NPY02 ELISA Kit, RATNPY ELISA Kit, RATNPY02 ELISA Kit, si:dkey-22m8.5 ELISA Kit, npy ELISA Kit, npyb ELISA Kit, preproNPY ELISA Kit, pyy4 ELISA Kit, xnpy ELISA Kit, npya ELISA Kit, MGC86288 ELISA Kit, prepronpy ELISA Kit, NPY ELISA Kit, NPY1 ELISA Kit, neuropeptide Y ELISA Kit, neuropeptide Y S homeolog ELISA Kit, neuropeptide Y L homeolog ELISA Kit, Npy ELISA Kit, NPY ELISA Kit, npy ELISA Kit, npy.S ELISA Kit, npy.L ELISA Kit, LOC100533423 ELISA Kit
    Background
    Neuropeptide Y (NPY) is a 36 amino acid peptide neurotransmitter found in the brain and autonomic nervous system. NPY has been associated with a number of physiologic processes in the brain, including the regulation of energy balance, memory and learning, and epilepsy. The main effect is increased food intake and decreased physical activity. In addition, NPY is secreted from the stomach. In addition to food intake, this increases the proportion of energy stored as fat and blocks nociceptive signals to the brain.NPY also augments the vasoconstrictor effects of noradrenergic neurons. NPY's role in regulating energy balance is well known. It forms part of the ",lipostat", system along with leptin and corticotropin-releasing hormone (CRH). High NPY levels in the cerebrospinal fluid are associated with high food intake and decreased physical activity. Leptin, produced by adipocytes in response to high fat levels, is detected by the arcuate nucleus in the hypothalamus. Increased arcuate nucleus activity acts on the paraventricular nucleus to inhibit the production of NPY at that site, thus reducing feeding behaviour. Arcuate nucleus activity also stimulates the release of CRH which further decreases feeding and increases energy expenditure. The receptor protein that NPY operates on is a G-protein coupled receptor in the rhodopsin like GPCR family. These receptors are metabotropic, causing metabolic changes in the target cell rather than directly opening ion channels. The protein contains seven membrane spanning domains and five subtypes have been identified in mammals, four of which are functional in humans.Subtypes Y1 and Y5 have known roles in the stimulation of feeding while Y2 and Y4 seem to have roles in appetite inhibition (satiety). Some of these receptors are among the most highly conserved neuropeptide receptors.
    Pathways
    Feeding Behaviour
You are here:
Support