You are viewing an incomplete version of our website. Please click to reload the website as full version.

Browse our anti-MAPK14 (MAPK14) Antibodies

Full name:
anti-Mitogen-Activated Protein Kinase 14 Antibodies (MAPK14)
On www.antibodies-online.com are 189 Mitogen-Activated Protein Kinase 14 (MAPK14) Antibodies from 24 different suppliers available. Additionally we are shipping MAPK14 Kits (42) and MAPK14 Proteins (34) and many more products for this protein. A total of 296 MAPK14 products are currently listed.
Synonyms:
186F5S, anon-sts23, AP22.98, AP22_98, ATMPK14, BG:DS00797.3, CG7393, CRK1, csbp, Csbp1, Csbp2, CSPB1, D-p38, D-p38 MAPK, D-p38b, Dmel\\CG7393, Dmp38b, Dm p38b, Dp38, dp38b, ESTS:186F5S, Exip, Hog, mapk14a, mitogen-activated protein kinase 14, Mpk34C, mxi2, p38, p38 beta, p38 MAPK, p38-alpha, p38a, p38alpha, p38B, p38beta, p38Hog, p38Kb, p38MAPK, Prkm14, Prkm15, RK, sapk2, sapk2a
list all antibodies Gene Name GeneID UniProt
MAPK14 1432 Q16539
MAPK14 26416 P47811
MAPK14 81649  

Show all species

Show all synonyms

Most Popular Reactivities for anti-MAPK14 (MAPK14) Antibodies

Select your species and application

anti-Human MAPK14 Antibodies:

anti-Mouse (Murine) MAPK14 Antibodies:

anti-Rat (Rattus) MAPK14 Antibodies:

All available anti-MAPK14 Antibodies

Go to our pre-filtered search.

Top referenced anti-MAPK14 Antibodies

  1. Cow (Bovine) Polyclonal MAPK14 Primary Antibody for IHC (fro), WB - ABIN372694 : Lin, Minden, Martinetto, Claret, Lange-Carter, Mercurio, Johnson, Karin: Identification of a dual specificity kinase that activates the Jun kinases and p38-Mpk2. in Science (New York, N.Y.) 1995 (PubMed)
    Show all 5 references for ABIN372694

  2. Human Polyclonal MAPK14 Primary Antibody for EIA, WB - ABIN359422 : Cheung, Campbell, Nebreda, Cohen: Feedback control of the protein kinase TAK1 by SAPK2a/p38alpha. in The EMBO journal 2003 (PubMed)
    Show all 5 references for ABIN359422

  3. Human Polyclonal MAPK14 Primary Antibody for EIA, WB - ABIN359424 : Dean, Sarsfield, Tsounakou, Saklatvala: p38 Mitogen-activated protein kinase stabilizes mRNAs that contain cyclooxygenase-2 and tumor necrosis factor AU-rich elements by inhibiting deadenylation. in The Journal of biological chemistry 2003 (PubMed)
    Show all 5 references for ABIN359424

  4. Human Monoclonal MAPK14 Primary Antibody for IHC, ELISA - ABIN1724904 : Li, Zheng, Li, Ma: Unfractionated heparin inhibits lipopolysaccharide-induced inflammatory response through blocking p38 MAPK and NF-?B activation on endothelial cell. in Cytokine 2012 (PubMed)
    Show all 2 references for ABIN1724904

  5. Human Polyclonal MAPK14 Primary Antibody for IHC (p), WB - ABIN197012 : Zheng, Reynolds, Jo, Wersto, Han, Xiao: Intracellular acidosis-activated p38 MAPK signaling and its essential role in cardiomyocyte hypoxic injury. in FASEB journal : official publication of the Federation of American Societies for Experimental Biology 2005 (PubMed)
    Show all 2 references for ABIN197012

  6. Human Polyclonal MAPK14 Primary Antibody for WB - ABIN197496 : van den Blink, Juffermans, ten Hove, Schultz, van Deventer, van der Poll, Peppelenbosch: p38 mitogen-activated protein kinase inhibition increases cytokine release by macrophages in vitro and during infection in vivo. in Journal of immunology (Baltimore, Md. : 1950) 2001 (PubMed)
    Show all 2 references for ABIN197496

  7. Dog (Canine) Polyclonal MAPK14 Primary Antibody for WB - ABIN2792184 : Choi, Kim, Kang, Bae, Cho, Soh, Kim, Kang, Chung, Lee, Lee: Activation of Bak and Bax through c-abl-protein kinase Cdelta-p38 MAPK signaling in response to ionizing radiation in human non-small cell lung cancer cells. in The Journal of biological chemistry 2006 (PubMed)

  8. Human Polyclonal MAPK14 Primary Antibody for IHC (p), WB - ABIN197010 : Kim, Tannenbaum, White: Global phosphoproteome of HT-29 human colon adenocarcinoma cells. in Journal of proteome research 2005 (PubMed)

  9. Cow (Bovine) Polyclonal MAPK14 Primary Antibody for IHC, WB - ABIN2792183 : Alemán, Schierloh, de la Barrera, Musella, Saab, Baldini, Abbate, Sasiain: Mycobacterium tuberculosis triggers apoptosis in peripheral neutrophils involving toll-like receptor 2 and p38 mitogen protein kinase in tuberculosis patients. in Infection and immunity 2004 (PubMed)

More Antibodies against MAPK14 Interaction Partners

Cow (Bovine) Mitogen-Activated Protein Kinase 14 (MAPK14) interaction partners

  1. cross-talk between p(38)MAPK (show MAPK1 Antibodies) and Gialpha play a pivotal role for full activation of cPLA2 (show PLA2G4A Antibodies) during ET-1 (show EDN1 Antibodies) stimulation of pulmonary artery smooth muscle cells.

  2. MAPK14 signalling pathway is largely involved in heat-induced sperm damage.

  3. p38 MAPK is an early redox sensor in the laminar shear stress with hydrogen peroxide being a signaling mediator.

  4. Blockade of p38 enhances chondrocyte phenotype in monolayer culture and may promote more efficient cartilage tissue regeneration for cell-based therapies.

  5. p38 phosphorylation and MMP13 (show MMP13 Antibodies) expression are regulated by Rho/ROCK activation, and support the potential novel pathway that Rho/ROCK is in the upper part of the mechanical stress-induced matrix degeneration cascade in cartilage.

  6. These data suggest that the p38 and JNK (show MAPK8 Antibodies) signaling pathways play pivotal roles in PRRSV replication and may regulate immune responses during virus infection.

  7. findings support the hypothesis that ischemic factor stimulation of the blood-brain barrier Na-K-Cl cotransporter (show SLC12A1 Antibodies) involves activation of p38 and JNK (show MAPK8 Antibodies) MAPKs

  8. These data suggest a differential requirement of JNK1 (show MAPK8 Antibodies) and p38 MAPK in TNF (show TNF Antibodies) regulation of E2F1 (show E2F1 Antibodies). Targeted inactivation of JNK1 (show MAPK8 Antibodies) at arterial injury sites may represent a potential therapeutic intervention for ameliorating TNF (show TNF Antibodies)-mediated EC dysfunction.

  9. p38 MAPK (MAPK14) is redox-regulated in reactive oxygen species-dependent endothelial barrier dysfunction.

  10. involvement of p38 MAP kinase activities and caldesmon (show CALD1 Antibodies) phosphorylation in the MLCK (show MYLK Antibodies)-independent regulation of thrombin (show F2 Antibodies)-induced endothelial cell permeability.

Fruit Fly (Drosophila melanogaster) Mitogen-Activated Protein Kinase 14 (MAPK14) interaction partners

  1. ROS (show ROS1 Antibodies)/JNK (show MAPK8 Antibodies)/p38/Upd (show UROD Antibodies) stress responsive module restores tissue homeostasis. This module is not only activated after cell death induction but also after physical damage and reveals one of the earliest responses for imaginal disc regeneration.

  2. Taken together, our findings indicate that the p38 MAP Kinase is an integral component of the core circadian clock of Drosophila in addition to playing a role in stress-input pathways.

  3. Data show that the genetic interaction between p38b MAPK (show MAPK1 Antibodies) and Rack1 (show GNB2L1 Antibodies) controls muscle aggregate formation, locomotor function, and longevity.

  4. The interaction of any of several Drosophila Delta class glutathione transferases and p38b mitogen-activated protein kinase (show MAPK1 Antibodies) can affect the substrate specificity of either enzyme, which suggests induced conformational changes affecting catalysis.

  5. found a correlation between the depth of integration of individual p38 kinases into the protein interaction network and their functional significance; propose a central role of p38b in the p38 signaling module with p38a and p38c playing more peripheral auxiliary roles

  6. Loss of p38 MAPK causes early lethality and precipitates age-related motor dysfunction and stress sensitivity.

  7. The p38 pathway-mediated stress response contribute to Drosophila host defense against microbial infection.

  8. p38b MAPK (show MAPK1 Antibodies) plays a crucial role in the balance between intestinal stem cell proliferation and proper differentiation in the adult Drosophila midgut.

  9. the D-p38b gene is regulated by the DREF (show ZBED1 Antibodies) pathway and DREF (show ZBED1 Antibodies) is involved in the regulation of proliferation and differentiation of Drosophila ISCs (show NFS1 Antibodies) and progenitors

Horse (Equine) Mitogen-Activated Protein Kinase 14 (MAPK14) interaction partners

  1. p38 mitogen-activated protein kinase is crucial for bovine papillomavirus type-1 transformation of equine fibroblasts.

  2. p38 Mitogen-activated protein kinase (MAPK (show MAPK1 Antibodies)) is essential for drug-induced COX-2 (show PTGS2 Antibodies) expression in leukocytes, suggesting that p38 MAPK is a potential target for anti-inflammatory therapy.

  3. These findings support a function for p38 MAPK in equine neutrophil migration and suggest the potential for the ability of p38 MAPK inhibition to limit neutrophilic inflammation in the laminae during acute laminitis.

  4. Cultured equine digital vein endothelial cells were exposed to lipopolysaccharide and phosphorylation of p38 MAPK was assessed by Western blotting using phospho-specific antibodies.

Human Mitogen-Activated Protein Kinase 14 (MAPK14) interaction partners

  1. Expression of GALNT3 (show GALNT3 Antibodies) was reduced in CAD (show CAD Antibodies) patients, and down regulation of GALNT3 (show GALNT3 Antibodies) contributed to endothelial injury by promoting apoptosis and up-regulating the expression of MMP-2 (show MMP2 Antibodies) and MMP-14 (show MMP14 Antibodies) genes via p38 MAPK activation.

  2. Specific inhibition of BRAF (show BRAF Antibodies) oncogene (show RAB1A Antibodies), MEK (show MAP2K1 Antibodies) or p38 (show CRK Antibodies) signaling was associated with decreases in DIO3 (show DIO3 Antibodies) expression in papillary thyroid cancer cells

  3. FAM172A protein is expressed at high levels in human papillary thyroid carcinoma, which may promote cell proliferation via activation of the p38 MAPK signaling pathway.

  4. MKK3 (show MAP2K3 Antibodies) overexpression upregulated the cyclin-dependent kinase (show CDK1 Antibodies) inhibitors, p16 INK4A (show CDKN2A Antibodies) and p15 INK4B (show CDKN2B Antibodies) in hepatocellular carcinoma cells was Bim1, was downregulated following MKK3 (show MAP2K3 Antibodies) overexpression.

  5. Suppression of ATAD2 (show ATAD2 Antibodies) impaired the growth of HepG2 and Hep3B subcutaneous xenografts, by enhancing apoptosis and p-p53 (show TP53 Antibodies) and p-p38 (show CRK Antibodies) levels.

  6. Findings indicate that CARMA3 (show CARD10 Antibodies) may suppress the activation of the P38 MAPK signaling pathway to regulate invasion, migration and apoptosis of lung cancer cells by activating NF-small ka, CyrillicB (P65 (show GORASP1 Antibodies)) in the nucleus.

  7. stichoposide D inhibits growth of experimental leukemia by activating Fas (show FAS Antibodies)/ceramide synthase 6 (show CERS6 Antibodies)/p38 (show CRK Antibodies) kinase in lipid rafts

  8. The obtained results strongly indicate the pyrazolobenzothiazine core as a new p38alpha inhibitor chemotype worthy of future chemical optimization efforts directed toward identifying a new generation of anti-inflammatory agents.

  9. a linear p38 (show CRK Antibodies)-MK2 (show KCNA2 Antibodies)-14-3-3 (show YWHAQ Antibodies) signalling pathway that specifically targets CEP131 (show AZI1 Antibodies) to trigger centriolar satellite remodelling after cell stress.

  10. p38alpha MAPK (show MAPK1 Antibodies) plays a critical role in the regulation of BACE1 (show BACE Antibodies) degradation and Abeta (show APP Antibodies) generation in Alzheimer Disease pathogenesis

Mouse (Murine) Mitogen-Activated Protein Kinase 14 (MAPK14) interaction partners

  1. these results suggested that piperine inhibited osteoclast differentiation by suppressing the p38/NFATc1/c-Fos signaling axis

  2. SB203580 increases G-CSF (show CSF3 Antibodies) expression in macrophages by increasing the stability of G-CSF (show CSF3 Antibodies) mRNA via its 3'UTR (show UTS2R Antibodies), and the effect was not due to its inhibition of p38 MAPK activity.

  3. Suggest p38alpha MAPK (show MAPK1 Antibodies) as a transcriptional regulator of skeletal muscle differentiation.

  4. Cold exposure promoted the osteogenic differentiation of mesenchymal stem cells partially via the p38 MAPK pathway.

  5. the regulation of the p38 mitogen-activated protein kinase (MAPK (show MAPK1 Antibodies)) signal pathway is capable of modulating MMP activity after stroke.

  6. we also demonstrated that Rac1 via P38 MAPK signaling ensures timely epithelial apoptotic death at postimplantation.

  7. Results indicate that Ang III (show AGT Antibodies) produces nociceptive behavior similar to Ang II (show AGT Antibodies), and suggest that the phosphorylation of p38 MAPK mediated through AT1 (show SLC33A1 Antibodies) receptors on spinal astrocytes and neurons contributes to Ang II (show AGT Antibodies)- and III-induced nociceptive behavior

  8. Increased expression of myostatin (show MSTN Antibodies) in heart muscle cells caused interstitial fibrosis via activation of the TAK-1 (show NR2C2 Antibodies)-MKK3 (show MAP2K3 Antibodies)/6-p38 (show CRK Antibodies) signaling pathway

  9. This study shows that lactate regulates Fgf21 (show FGF21 Antibodies) expression through a NADH/NAD-independent pathway, but requires active p38-MAPK (mitogen activated protein kinase (show MAPK1 Antibodies)) signalling.

  10. blocking MPTP (show PTPN2 Antibodies)-mediated TNF (show TNF Antibodies) signaling through intrathecal administration of TNF (show TNF Antibodies)-neutralizing antibody prevented Trx1 (show TXN Antibodies) oxidation and downstream ASK1 (show MAP3K5 Antibodies)-p38 MAPK activation

Rabbit Mitogen-Activated Protein Kinase 14 (MAPK14) interaction partners

  1. These findings suggest that the TQ-induced production of ROS (show ROS1 Antibodies) causes dedifferentiation through the ERK (show MAPK1 Antibodies) pathway and inflammation through the PI3K and p38 pathways in rabbit articular chondrocytes.

  2. These results suggest that p38 MAPK signal transduction pathway is critical to NO-induced chondrocyte apoptosis, and p38 plays a role by way of stimulating NF-kappaB (show NFKB1 Antibodies), p53 (show TP53 Antibodies) and caspase-3 (show CASP3 Antibodies) activation.

Pig (Porcine) Mitogen-Activated Protein Kinase 14 (MAPK14) interaction partners

  1. Porcine reproductive and respiratory syndrome virus strain CH-1a could significantly up-regulate IL-10 (show IL10 Antibodies) production through p38 MAPK activation.

  2. JNK (show MAPK8 Antibodies) plays an active role in fragmentation of pig oocytes and p38 MAPK is not involved in this process.[p38MAPK]

  3. Retinal ischemia-reperfusion alters expression of mitogen-activated protein kinases, particularly ERK1/2 (show MAPK1/3 Antibodies), in the neuroretina and retinal arteries.

Xenopus laevis Mitogen-Activated Protein Kinase 14 (MAPK14) interaction partners

  1. cytochrome c (show CYCS Antibodies) microinjection induces p38 phosphorylation through caspase-3 (show CASP3 Antibodies) activation, and caspase (show CASP3 Antibodies) inhibition reduces p38 activation induced by osmostress, indicating that a positive feedback loop is engaged by hyperosmotic shock

MAPK14 Antigen Profile

Antigen Summary

The protein encoded by this gene is a member of the MAP kinase family. MAP kinases act as an integration point for multiple biochemical signals, and are involved in a wide variety of cellular processes such as proliferation, differentiation, transcription regulation and development. This kinase is activated by various environmental stresses and proinflammatory cytokines. The activation requires its phosphorylation by MAP kinase kinases (MKKs), or its autophosphorylation triggered by the interaction of MAP3K7IP1/TAB1 protein with this kinase. The substrates of this kinase include transcription regulator ATF2, MEF2C, and MAX, cell cycle regulator CDC25B, and tumor suppressor p53, which suggest the roles of this kinase in stress related transcription and cell cycle regulation, as well as in genotoxic stress response. Four alternatively spliced transcript variants of this gene encoding distinct isoforms have been reported.

Alternative names and synonyms associated with MAPK14

  • mitogen-activated protein kinase 14 (MPK14) antibody
  • mitogen-activated protein kinase 14 (MAPK14) antibody
  • mitogen-activated protein kinase 14 (Mapk14) antibody
  • CG7393 gene product from transcript CG7393-RA (p38b) antibody
  • mitogen activated protein kinase 14 (Mapk14) antibody
  • mitogen-activated protein kinase 14 (mapk14) antibody
  • 186F5S antibody
  • anon-sts23 antibody
  • AP22.98 antibody
  • AP22_98 antibody
  • ATMPK14 antibody
  • BG:DS00797.3 antibody
  • CG7393 antibody
  • CRK1 antibody
  • csbp antibody
  • Csbp1 antibody
  • Csbp2 antibody
  • CSPB1 antibody
  • D-p38 antibody
  • D-p38 MAPK antibody
  • D-p38b antibody
  • Dmel\\CG7393 antibody
  • Dmp38b antibody
  • Dm p38b antibody
  • Dp38 antibody
  • dp38b antibody
  • ESTS:186F5S antibody
  • Exip antibody
  • Hog antibody
  • mapk14a antibody
  • mitogen-activated protein kinase 14 antibody
  • Mpk34C antibody
  • mxi2 antibody
  • p38 antibody
  • p38 beta antibody
  • p38 MAPK antibody
  • p38-alpha antibody
  • p38a antibody
  • p38alpha antibody
  • p38B antibody
  • p38beta antibody
  • p38Hog antibody
  • p38Kb antibody
  • p38MAPK antibody
  • Prkm14 antibody
  • Prkm15 antibody
  • RK antibody
  • sapk2 antibody
  • sapk2a antibody

Protein level used designations for MAPK14

MAP kinase 14 , MAP kinase p38 alpha , MAPK 14 , mitogen-activated protein kinase p38 alpha , p38 mitogen activated protein kinase , CG7393-PA , p38 mitogen-activated protein kinase , p38b-PA , stress-activated p38b MAP kinase , p38 mitogen-activated kinase , cytokine suppressive anti-inflammatory drug binding protein 1 , mitogen activated protein kinase 14 , p38 MAP kinase alpha , p38 MAPK , p38 alpha , tRNA synthetase cofactor p38 , CSAIDS-binding protein 1 , mitogen-activated protein kinase 14A , stress-activated protein kinase 2a , Csaids binding protein , MAP kinase 2 , MAP kinase Mxi2 , MAX-interacting protein 2 , cytokine suppressive anti-inflammatory drug binding protein , cytokine-supressive anti-inflammatory drug binding protein , mitogen-activated protein kinase 14 , p38 MAP kinase , p38alpha Exip , reactive kinase , stress-activated protein kinase 2A , MAPK p38 , MPK2 , Mitogen-activated protein kinase 2 , mitogen-activated Mitogen-activated protein kinase 2

GENE ID SPECIES
829797 Arabidopsis thaliana
534492 Bos taurus
403856 Canis lupus familiaris
100723285 Cavia porcellus
34780 Drosophila melanogaster
100063532 Equus caballus
421183 Gallus gallus
1432 Homo sapiens
26416 Mus musculus
100341695 Oryctolagus cuniculus
450161 Pan troglodytes
81649 Rattus norvegicus
100156630 Sus scrofa
379992 Xenopus laevis
Selected quality suppliers for anti-MAPK14 (MAPK14) Antibodies
Did you look for something else?