Browse our anti-MAPK14 (MAPK14) Antibodies

On www.antibodies-online.com are 195 Mitogen-Activated Protein Kinase 14 (MAPK14) Antibodies from 26 different suppliers available. Additionally we are shipping MAPK14 Kits (48) and MAPK14 Proteins (38) and many more products for this protein. A total of 312 MAPK14 products are currently listed.
Synonyms:
186F5S, anon-sts23, AP22.98, AP22_98, ATMPK14, BG:DS00797.3, CG7393, CRK1, csbp, Csbp1, Csbp2, CSPB1, D-p38, D-p38 MAPK, D-p38b, Dmel\\CG7393, Dmp38b, Dm p38b, Dp38, dp38b, ESTS:186F5S, Exip, Hog, mapk14a, mitogen-activated protein kinase 14, Mpk34C, mxi2, p38, p38 beta, p38 MAPK, p38-alpha, p38a, p38alpha, p38B, p38beta, p38Hog, p38Kb, p38MAPK, Prkm14, Prkm15, RK, sapk2, sapk2a
list all antibodies Gene Name GeneID UniProt
MAPK14 1432 Q16539
MAPK14 26416 P47811
MAPK14 81649  

Most Popular Reactivities for anti-MAPK14 (MAPK14) Antibodies

anti-Human MAPK14 Antibodies:

anti-Mouse (Murine) MAPK14 Antibodies:

anti-Rat (Rattus) MAPK14 Antibodies:

All available anti-MAPK14 Antibodies

Go to our pre-filtered search.

More Antibodies against MAPK14 Interaction Partners

Cow (Bovine) Mitogen-Activated Protein Kinase 14 (MAPK14) interaction partners

  1. results suggest that ET-1 (show EDN1 Antibodies)-induced activation of proMMP-2 is mediated via cross-talk between NADPH oxidase (show NOX1 Antibodies)-PKCalpha (show PKCa Antibodies)-p(38)MAPK (show MAPK1 Antibodies) and NFkappaB-MT1MMP (show MMP14 Antibodies) signaling pathways along with a marked decrease in TIMP-2 (show TIMP2 Antibodies) expression in the cells

  2. cross-talk between p(38)MAPK (show MAPK1 Antibodies) and Gialpha play a pivotal role for full activation of cPLA2 (show PLA2G4A Antibodies) during ET-1 (show EDN1 Antibodies) stimulation of pulmonary artery smooth muscle cells.

  3. MAPK14 signalling pathway is largely involved in heat-induced sperm damage.

  4. p38 MAPK is an early redox sensor in the laminar shear stress with hydrogen peroxide being a signaling mediator.

  5. Blockade of p38 enhances chondrocyte phenotype in monolayer culture and may promote more efficient cartilage tissue regeneration for cell-based therapies.

  6. p38 phosphorylation and MMP13 (show MMP13 Antibodies) expression are regulated by Rho/ROCK activation, and support the potential novel pathway that Rho/ROCK is in the upper part of the mechanical stress-induced matrix degeneration cascade in cartilage.

  7. These data suggest that the p38 and JNK (show MAPK8 Antibodies) signaling pathways play pivotal roles in PRRSV replication and may regulate immune responses during virus infection.

  8. findings support the hypothesis that ischemic factor stimulation of the blood-brain barrier Na-K-Cl cotransporter (show SLC12A1 Antibodies) involves activation of p38 and JNK (show MAPK8 Antibodies) MAPKs

  9. These data suggest a differential requirement of JNK1 (show MAPK8 Antibodies) and p38 MAPK in TNF (show TNF Antibodies) regulation of E2F1 (show E2F1 Antibodies). Targeted inactivation of JNK1 (show MAPK8 Antibodies) at arterial injury sites may represent a potential therapeutic intervention for ameliorating TNF (show TNF Antibodies)-mediated EC dysfunction.

  10. p38 MAPK (MAPK14) is redox-regulated in reactive oxygen species-dependent endothelial barrier dysfunction.

Fruit Fly (Drosophila melanogaster) Mitogen-Activated Protein Kinase 14 (MAPK14) interaction partners

  1. ROS (show ROS1 Antibodies)/JNK (show MAPK8 Antibodies)/p38/Upd (show UROD Antibodies) stress responsive module restores tissue homeostasis. This module is not only activated after cell death induction but also after physical damage and reveals one of the earliest responses for imaginal disc regeneration.

  2. Taken together, our findings indicate that the p38 MAP Kinase is an integral component of the core circadian clock of Drosophila in addition to playing a role in stress-input pathways.

  3. Data show that the genetic interaction between p38b MAPK (show MAPK1 Antibodies) and Rack1 (show GNB2L1 Antibodies) controls muscle aggregate formation, locomotor function, and longevity.

  4. The interaction of any of several Drosophila Delta class glutathione transferases and p38b mitogen-activated protein kinase (show MAPK1 Antibodies) can affect the substrate specificity of either enzyme, which suggests induced conformational changes affecting catalysis.

  5. found a correlation between the depth of integration of individual p38 kinases into the protein interaction network and their functional significance; propose a central role of p38b in the p38 signaling module with p38a and p38c playing more peripheral auxiliary roles

  6. Loss of p38 MAPK causes early lethality and precipitates age-related motor dysfunction and stress sensitivity.

  7. The p38 pathway-mediated stress response contribute to Drosophila host defense against microbial infection.

  8. p38b MAPK (show MAPK1 Antibodies) plays a crucial role in the balance between intestinal stem cell proliferation and proper differentiation in the adult Drosophila midgut.

  9. the D-p38b gene is regulated by the DREF (show ZBED1 Antibodies) pathway and DREF (show ZBED1 Antibodies) is involved in the regulation of proliferation and differentiation of Drosophila ISCs (show NFS1 Antibodies) and progenitors

Horse (Equine) Mitogen-Activated Protein Kinase 14 (MAPK14) interaction partners

  1. p38 mitogen-activated protein kinase is crucial for bovine papillomavirus type-1 transformation of equine fibroblasts.

  2. p38 Mitogen-activated protein kinase (MAPK (show MAPK1 Antibodies)) is essential for drug-induced COX-2 (show PTGS2 Antibodies) expression in leukocytes, suggesting that p38 MAPK is a potential target for anti-inflammatory therapy.

  3. These findings support a function for p38 MAPK in equine neutrophil migration and suggest the potential for the ability of p38 MAPK inhibition to limit neutrophilic inflammation in the laminae during acute laminitis.

  4. Cultured equine digital vein endothelial cells were exposed to lipopolysaccharide and phosphorylation of p38 MAPK was assessed by Western blotting using phospho-specific antibodies.

Human Mitogen-Activated Protein Kinase 14 (MAPK14) interaction partners

  1. findings show that endothelial MAPKs ERK (show EPHB2 Antibodies), p38 (show CRK Antibodies), and JNK (show MAPK8 Antibodies) mediate diapedesis-related and diapedesis-unrelated functions of ICAM-1 (show ICAM1 Antibodies) in cerebral and dermal microvascular endothelial cells

  2. Tetraarsenic hexoxide (As4O6) induced G2/M arrest, apoptosis and autophagic cell death through PI3K (show PIK3CA Antibodies)/Akt (show AKT1 Antibodies) and p38 MAPK pathways alteration in SW620 colon cancer cells.

  3. The N-Terminal phosphorylation of RB by p38 (show CRK Antibodies) bypasses its inactivation by cyclin (show PCNA Antibodies)-dependent kinases and prevents proliferation in cancer cells.

  4. Inhibition of MAPK14 conclusively facilitates elucidation of the impact of the complex network of p38 MAPK signaling on atherogenesis.

  5. Collectively, this study provides more insights into RELT (show RELT Antibodies) expression, RELT (show RELT Antibodies) family member function, and the mechanism of RELT (show RELT Antibodies)-induced death.

  6. Data, including data from studies conducted in cells from transgenic/knockout mice, suggest that p38alpha MAPK (show MAPK1 Antibodies) (MAPK14) activity is required for hypoxia-induced pro-angiogenic activity involving cardiomyocytes and vascular endothelial cells; p38 MAPK activation in cardiomyocyte is sufficient to promote paracrine signaling-mediated, pro-angiogenic activity/myocardial revascularization.

  7. The findings indicate that p38alpha and GADD45alpha (show GADD45A Antibodies) are involved in an enhanced vitamin D signaling on TRPV6 (show TRPV6 Antibodies) expression.

  8. These results suggest that the p38 (show CRK Antibodies)/NPM (show NPM1 Antibodies)/PP2A (show PPP2R4 Antibodies) complex acts as a dynamic sensor, allowing endothelial cells to react rapidly to acute oxidative stress.

  9. Inhibition of the inflammatory signaling intermediate p38 MAPK reduced tissue factor (show F3 Antibodies) (TF) mRNA by one third but increased tumor necrosis factor (TNF (show TNF Antibodies)) and interleukin-1 beta (IL-1beta (show IL1B Antibodies)) mRNA.

  10. These results suggest that the activation of endogenous levels of SFK renders the endothelial barrier more susceptible to low, physiologic doses of TNF-alpha (show TNF Antibodies) through activation of p38 (show CRK Antibodies) which leads to a loss of endothelial tight junctions.

Mouse (Murine) Mitogen-Activated Protein Kinase 14 (MAPK14) interaction partners

  1. Soluble epoxide hydrolase (show EPHX2 Antibodies) inhibitor AUDA decreases bleomycin-induced pulmonary toxicity in mice by inhibiting the p38 (show CRK Antibodies)/Smad3 (show SMAD3 Antibodies) signaling pathway.

  2. These results provide evidence supporting a key role for the p38 MAPK signaling pathway which is involved in the regulation of Abeta1-42 internalization in the parietal cortex and hippocampus of mouse through LRP1 (show LRP1 Antibodies) in vivo.

  3. The N-Terminal phosphorylation of RB by p38 (show CRK Antibodies) bypasses its inactivation by cyclin (show PCNA Antibodies)-dependent kinases and prevents proliferation in cancer cells.

  4. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were used to detect the mRNA and protein expressions of p-p38MAPK, AAT (show SERPINA1A Antibodies), signal transducer and activator of transcription 1 (STAT1 (show STAT1 Antibodies)) and activating transcription factor2 (ATF2 (show ATF2 Antibodies))

  5. p38alpha is essential to maintain in actin dynamics with age in hepatocytes.

  6. Data, including data from studies conducted in cells from transgenic/knockout mice, suggest that p38alpha MAPK (show MAPK1 Antibodies) (Mapk14) activity is required for hypoxia-induced pro-angiogenic activity involving cardiomyocytes and vascular endothelial cells; p38 MAPK activation in cardiomyocyte is sufficient to promote paracrine signaling-mediated, pro-angiogenic activity/myocardial revascularization.

  7. blockage of NF-kappaB (show NFKB1 Antibodies) p65 (show NFkBP65 Antibodies) and/or MAPK p38 (show MAPK1 Antibodies) with their specific inhibitors strongly attenuated B7-H3 (show CD276 Antibodies)-amplified inflammatory response with significantly reduced proinflammatory cytokine and chemokine (show CCL1 Antibodies) production, and markedly ameliorated B7-H3 (show CD276 Antibodies)-exacerbated disruption of blood-brain barrier and severity of disease status in S. pneumoniae-infected mice.

  8. Data suggest that single muscle immobilization induces a shift of myosin heavy chain (MHC) isoforms composition toward a faster contractile phenotype and decreases the polymorphic profile of single fibres, and that activation of p38 and JNK could be a potential mechanism involved in these contractile phenotype modifications during muscle immobilization.

  9. The kinase TPL2 (show MAP3K8 Antibodies) activates ERK (show EPHB2 Antibodies) and p38 (show CRK Antibodies) signaling to promote neutrophilic inflammation

  10. studies have therefore uncovered a p38alpha-mediated pathway that alters Hematopoietic Stem/Progenitor Cell metabolism to respond to stress and promote recovery.

Rabbit Mitogen-Activated Protein Kinase 14 (MAPK14) interaction partners

  1. These findings suggest that the TQ-induced production of ROS (show ROS1 Antibodies) causes dedifferentiation through the ERK (show MAPK1 Antibodies) pathway and inflammation through the PI3K and p38 pathways in rabbit articular chondrocytes.

  2. These results suggest that p38 MAPK signal transduction pathway is critical to NO-induced chondrocyte apoptosis, and p38 plays a role by way of stimulating NF-kappaB (show NFKB1 Antibodies), p53 (show TP53 Antibodies) and caspase-3 (show CASP3 Antibodies) activation.

Pig (Porcine) Mitogen-Activated Protein Kinase 14 (MAPK14) interaction partners

  1. Porcine reproductive and respiratory syndrome virus strain CH-1a could significantly up-regulate IL-10 (show IL10 Antibodies) production through p38 MAPK activation.

  2. JNK (show MAPK8 Antibodies) plays an active role in fragmentation of pig oocytes and p38 MAPK is not involved in this process.[p38MAPK]

  3. Retinal ischemia-reperfusion alters expression of mitogen-activated protein kinases, particularly ERK1/2 (show MAPK1/3 Antibodies), in the neuroretina and retinal arteries.

Xenopus laevis Mitogen-Activated Protein Kinase 14 (MAPK14) interaction partners

  1. cytochrome c (show CYCS Antibodies) microinjection induces p38 phosphorylation through caspase-3 (show CASP3 Antibodies) activation, and caspase (show CASP3 Antibodies) inhibition reduces p38 activation induced by osmostress, indicating that a positive feedback loop is engaged by hyperosmotic shock

MAPK14 Antigen Profile

Antigen Summary

The protein encoded by this gene is a member of the MAP kinase family. MAP kinases act as an integration point for multiple biochemical signals, and are involved in a wide variety of cellular processes such as proliferation, differentiation, transcription regulation and development. This kinase is activated by various environmental stresses and proinflammatory cytokines. The activation requires its phosphorylation by MAP kinase kinases (MKKs), or its autophosphorylation triggered by the interaction of MAP3K7IP1/TAB1 protein with this kinase. The substrates of this kinase include transcription regulator ATF2, MEF2C, and MAX, cell cycle regulator CDC25B, and tumor suppressor p53, which suggest the roles of this kinase in stress related transcription and cell cycle regulation, as well as in genotoxic stress response. Four alternatively spliced transcript variants of this gene encoding distinct isoforms have been reported.

Alternative names and synonyms associated with MAPK14

  • mitogen-activated protein kinase 14 (MPK14) antibody
  • mitogen-activated protein kinase 14 (MAPK14) antibody
  • mitogen-activated protein kinase 14 (Mapk14) antibody
  • CG7393 gene product from transcript CG7393-RA (p38b) antibody
  • mitogen activated protein kinase 14 (Mapk14) antibody
  • mitogen-activated protein kinase 14 (mapk14) antibody
  • 186F5S antibody
  • anon-sts23 antibody
  • AP22.98 antibody
  • AP22_98 antibody
  • ATMPK14 antibody
  • BG:DS00797.3 antibody
  • CG7393 antibody
  • CRK1 antibody
  • csbp antibody
  • Csbp1 antibody
  • Csbp2 antibody
  • CSPB1 antibody
  • D-p38 antibody
  • D-p38 MAPK antibody
  • D-p38b antibody
  • Dmel\\CG7393 antibody
  • Dmp38b antibody
  • Dm p38b antibody
  • Dp38 antibody
  • dp38b antibody
  • ESTS:186F5S antibody
  • Exip antibody
  • Hog antibody
  • mapk14a antibody
  • mitogen-activated protein kinase 14 antibody
  • Mpk34C antibody
  • mxi2 antibody
  • p38 antibody
  • p38 beta antibody
  • p38 MAPK antibody
  • p38-alpha antibody
  • p38a antibody
  • p38alpha antibody
  • p38B antibody
  • p38beta antibody
  • p38Hog antibody
  • p38Kb antibody
  • p38MAPK antibody
  • Prkm14 antibody
  • Prkm15 antibody
  • RK antibody
  • sapk2 antibody
  • sapk2a antibody

Protein level used designations for MAPK14

MAP kinase 14 , MAP kinase p38 alpha , MAPK 14 , mitogen-activated protein kinase p38 alpha , p38 mitogen activated protein kinase , CG7393-PA , p38 mitogen-activated protein kinase , p38b-PA , stress-activated p38b MAP kinase , p38 mitogen-activated kinase , cytokine suppressive anti-inflammatory drug binding protein 1 , mitogen activated protein kinase 14 , p38 MAP kinase alpha , p38 MAPK , p38 alpha , tRNA synthetase cofactor p38 , CSAIDS-binding protein 1 , mitogen-activated protein kinase 14A , stress-activated protein kinase 2a , Csaids binding protein , MAP kinase 2 , MAP kinase Mxi2 , MAX-interacting protein 2 , cytokine suppressive anti-inflammatory drug binding protein , cytokine-supressive anti-inflammatory drug binding protein , mitogen-activated protein kinase 14 , p38 MAP kinase , p38alpha Exip , reactive kinase , stress-activated protein kinase 2A , MAPK p38 , MPK2 , Mitogen-activated protein kinase 2 , mitogen-activated Mitogen-activated protein kinase 2

GENE ID SPECIES
829797 Arabidopsis thaliana
534492 Bos taurus
403856 Canis lupus familiaris
100723285 Cavia porcellus
34780 Drosophila melanogaster
100063532 Equus caballus
421183 Gallus gallus
1432 Homo sapiens
26416 Mus musculus
100341695 Oryctolagus cuniculus
450161 Pan troglodytes
81649 Rattus norvegicus
100156630 Sus scrofa
379992 Xenopus laevis
Selected quality suppliers for anti-MAPK14 (MAPK14) Antibodies
Did you look for something else?