+1 877 302 8632
+1 888 205 9894 (Toll-free)

MDH2 ELISA Kit (Malate Dehydrogenase 2, NAD (Mitochondrial)) ELISA Kit

MDH2 Reactivity: Mouse Soluble Colorimetric Sandwich ELISA Cell Culture Supernatant
Catalog No. ABIN456445
Plus shipping costs $45.00
96 tests
local_shipping Shipping to: United States
Delivery in 15 to 18 Business Days
  • Target
    Binding Specificity
    Detection Method
    Method Type
    Sandwich ELISA
    This immunoassay kit allows for the specific measurement of mouse soluble Intercellular Adhesion Molecule 1(sICAM-1) concentrations in cell culture supernates, serum, and plasma.
    Sample Type
    Cell Culture Supernatant, Serum, Plasma
    Analytical Method
    This assay recognizes recombinant and natural mouse sICAM-1.
    Cross-Reactivity (Details)
    No significant cross-reactivity or interference was observed.
    < 1 ng/mL
    The sensitivity of this assay, or Lower Limit of Detection (LLD) was defined as the lowest detectable concentration that could be differentiated from zero.
    Mus musculus,Mouse,Malate dehydrogenase, mitochondrial,Mdh2,Mor1,
    Reagent (Quantity): Assay plate (1), Standard (2), Sample Diluent (1x20ml), Assay Diluent A (1x10ml), Assay Diluent B (1x10ml), Detection Reagent A 1×120µl Detection Reagent B 1×120µl Wash Buffer(25 x concentrate) (1x30ml), Substrate (1x10ml), Stop Solution (1x10ml)
  • Target
    Alternative Name
    Mdh2 (MDH2 ELISA Kit Abstract)
    Adhesion molecules mediate the interaction of cells with the extracellular matrix and with other cells. The immunoglobulin superfamily of proteins contains a large class of adhesion molecules with multiple immunoglobulin-like domains. ICAM is a member of this family. It is a 90 kDa type-I transmembrane glycoprotein with five Ig-like extracellular domains. The most important ligands for ICAM-1 are the integrins LFA-1 (CD11a/CD18) and Mac-1 (CD11b/CD18), which are expressed on leukocytes. ICAM-1 thus mediates the adhesion of leukocytes to ICAM-1-expressing cells. ICAM-1 also binds fibrinogen, hyaluronan, Rhinoviruses, Plasmodium falciparum-infected erythrocytes and CD43 (sialophorin) ICAM-1 is either a transmembrane protein (mICAM-1) or soluble (sICAM-1). mICAM-1 is expressed on endothelial and epithelial cells, lymphocytes, monocytes, eosinophils, keratinocytes, dendritic cells, hematopoietic stem cells, hepatocytes and fibroblasts. Regulation of ICAM-1 expression is cell specific. Up-regulation generally is by inflammatory cytokines (TNF-alpha, IFN-gamma and IL-1) and down-regulation generally is by anti-inflammatory agents (e.g.glucocorticoids). One important, well-characterized function of ICAM-1 is immune-cell trafficking. At sites of inflammation, inflammatory cytokines induce up-regulation of ICAM-1 expression on vascular endothelial cells and activation of leukocyte integrins (LFA-1 and Mac-1). This leads to adhesion of leukocytes to the local endothelium, an essential step in migration of leukocytes to the site of inflammation. sICAM-1 has been reported in serum, cerebrospinal fluid and bronchoalveolar lavage. sICAM-1 likely arises by proteolytic cleavage of mICAM-1, synthesis from an alternatively spliced message has not been found. In general, elevated levels of serum sICAM-1 appear to be associated with inflammatory conditions and certain malignancies. It has, however, been pointed out that in inflammatory conditions, where the ligands LFA-1 and Mac-1 are likely to be activated, binding and clearance of sICAM-1 might be enhanced, so that a reciprocal relationship between sICAM-1 levels and inflammation also is possible.
  • Sample Volume
    100 μL
    This assay employs the quantitative sandwich enzyme immunoassay technique. A monoclonal antibody specific for sICAM-1 has been pre-coated onto a microplate. Standards and samples are 2 pipetted into the wells and any sICAM-1 present is bound by the immobilized antibody. An enzyme-linked monoclonal antibody specific for sICAM-1 is added to the wells. Following a wash to remove any unbound antibody-enzyme reagent, a substrate solution is added to the wells and color develops in proportion to the amount of sICAM-1 bound in the initial step. The color development is stopped and the intensity of the color is measured.
    Reagent Preparation

    3 Bring all reagents to room temperature before use. Wash Buffer - If crystals have formed in the concentrate, warm to room temperature and mix gently until the crystals have completely dissolved. Dilute 20 mL of Wash Buffer Concentrate into deionized or distilled water to prepare 500 mL of Wash Buffer. Standard - Reconstitute the Standard with 1.0 mL of Sample Diluent. This reconstitution produces a stock solution of 500 ng/mL. Allow the standard to sit for a minimum of 15 minutes with gentle agitation prior to making serial dilutions. The undiluted standard serves as the high standard (500 ng/mL). The Sample Diluent serves as the zero standard (0 ng/mL). Detection Reagent A and B - Dilute to the working concentration specified on the vial label using Assay Diluent A and B (1:100), respectively.

    Sample Collection
    Cell culture supernates - Remove particulates by centrifugation and assay immediately or aliquot and store samples at ≤ -20 °C. Avoid repeated freeze-thaw cycles. Serum - Use a serum separator tube (SST) and allow samples to clot for 30 minutes before centrifugation for 15 minutes at approximately 1000 x g. Remove serum and assay immediately or aliquot and store samples at -20 °C. Plasma - Collect plasma using EDTA or heparin as an anticoagulant. Centrifuge samples for 15 minutes at 1000 x g at 2 - 8 °C within 30 minutes of collection. Store samples at ≤ -20 °C. Avoid repeated freeze-thaw cycles. Note: Citrate plasma has not been validated for use in this assay.
    Assay Procedure

    Allow all reagents to reach room temperature. Arrange and label required number of strips.
    1. Prepare all reagents, working standards and samples as directed in the previous sections.
    2. Add 100 uL of Standard, Control, or sample per well. Cover with the adhesive strip. Incubate for 2 hours at 37 °C.
    3. Remove the liquid of each well, don’t wash.
    4. Add 100 uL of Detection Reagent A to each well. Incubate for 1 hour at 37°C . Detection Reagent A may appear cloudy. Warm to room temperature and mix gently until solution appears uniform.
    5. Aspirate each well and wash, repeating the process three times for a total of three washes. Wash by filling each well with Wash Buffer (350 uL) using a squirt bottle, multi-channel pipette, manifold dispenser or autowasher. Complete removal of liquid at each step is essential to good performance. After the last wash, remove any remaining Wash Buffer by aspirating or decanting. Invert the plate and blot it against clean paper towels.
    6. Add 100 uL of Detection Reagent B to each well. Cover with a new adhesive strip.Incubate for 1 hours at 37 °C.
    7. Repeat the aspiration/wash as in step
    5. 8. Add 90 uL of Substrate Solution to each well. Incubate for 30 minutes at room temperature. Protect from light.
    9. Add 50 uL of Stop Solution to each well. If color change does not appear uniform, gently tap the plate to ensure thorough mixing.
    10. Determine the optical density of each well within 30 minutes, using a microplate reader set to 450 nm.
    Important Note:
    1. The wash procedure is critical. Insufficient washing will result in poor precision and falsely elevated absorbance readings.
    2. It is recommended that no more than 32 wells be used for each assay run if manual pipetting is used since pipetting of all standards, specimens and controls should be completed within 5 minutes. A full plate of 96 wells may be used if automated pipetting is available.
    3. Duplication of all standards and specimens, although not required, is recommended.
    4. When mixing or reconstituting protein solutions, always avoid foaming.
    5. To avoid cross-contamination, change pipette tips between additions of each standard level, between sample additions, and between reagent additions. Also, use separate reservoirs for each reagent.
    6. To ensure accurate results, proper adhesion of plate sealers during incubation steps is necessary.

    Calculation of Results

    Average the duplicate readings for each standard, control, and sample and subtract the average zero standard optical density. Create a standard curve by reducing the data using computer software capable of generating a four parameter logistic (4-PL) curve-fit. As an alternative, construct a standard curve by plotting the mean absorbance for each standard on the y-axis against the concentration on the x-axis and draw a best fit curve through the points on the graph. The data may be linearized by plotting the log of the sICAM-1 concentrations versus the log of the O.D. and the best fit line can be determined by regression analysis. This procedure will produce an adequate but less precise fit of the data. If samples have been diluted, the concentration read from the standard curve must be multiplied by the dilution factor.

    For Research Use only
  • Handling Advice
    1. The kit should not be used beyond the expiration date on the kit label.
    2. Do not mix or substitute reagents with those from other lots or sources.
    3. If samples generate values higher than the highest standard, further dilute the samples with the Assay Diluent and repeat the assay. Any variation in standard diluent, operator, pipetting technique, washing technique,incubation time or temperature, and kit age can cause variation in binding.
    4. This assay is designed to eliminate interference by soluble receptors, ligands, binding proteins, and other factors present in biological samples. Until all factors have been tested in the Immunoassay, the possibility of interference cannot be excluded.
    4 °C/-20 °C
    Storage Comment
    The Standard, Detection Reagent A, Detection Reagent B and the 96-well strip plate should be stored at -20 °C upon being received. The other reagents can be stored at 4 °C.
You are here:
help Support