Fused in Sarcoma (FUS) ELISA Kits

FUS encodes a multifunctional protein component of the heterogeneous nuclear ribonucleoprotein (hnRNP) complex. Additionally we are shipping FUS Antibodies (40) and FUS Proteins (2) and many more products for this protein.

list all ELISA KIts Gene Name GeneID UniProt
FUS 2521 P35637
FUS 233908 P56959
Anti-Rat FUS FUS 317385  
How to order from antibodies-online
  • +1 877 302 8632
  • +1 888 205 9894 (toll-free)
  • Order online
  • orders@antibodies-online.com

Top FUS ELISA Kits at antibodies-online.com

Showing 3 out of 3 products:

Catalog No. Reactivity Sensitivity Range Images Quantity Supplier Delivery Price Details
Human 0.156-10 ng/mL   96 Tests Log in to see 15 to 18 Days
$875.60
Details
Mouse
  96 Tests Log in to see 15 to 18 Days
$875.60
Details
Cow
  96 Tests Log in to see 15 to 18 Days
$1,029.60
Details

More ELISA Kits for FUS Interaction Partners

Human Fused in Sarcoma (FUS) interaction partners

  1. FUS P525L mutation alters transcriptome and microRNA pathways in motor neurons with implications for ALS pathogenesis.

  2. This study showed that in fibroblasts of FUS P525L mutation carriers, FUS mislocalized to the cytoplasm where it redistributed into stress granules with likely a dose effect.

  3. Results find that mutant but not wild-type FUS decreased dendritic growth, mRNA levels, and protein synthesis in dendrites. These data suggest that cytoplasmic FUS aggregates trap mRNA and its transporters, impairing dendritic mRNA trafficking and translation, in turn leading to the disruption of dendritic homeostasis and the development of frontotemporal dementia phenotypes.

  4. activation of the IGF-IR/PI3K (show PIK3CA ELISA Kits)/Akt (show AKT1 ELISA Kits) signaling system is a common pattern in MLS which appears to be transcriptionally controlled, at least in part by induction of IGF2 gene transcription in a FUS-DDIT3 (show DDIT3 ELISA Kits)-dependent manner.

  5. SOD1 mutations were present in 20% of familial amyotrophic lateral sclerosis (ALS) patients and 1.9% of sporadic ALS patients, while FUS mutations were responsible for 13.3% of familial ALS cases, and TARDBP mutations were rare in either familial or sporadic ALS cases.

  6. Depletion of SAFB1 reduced FUS's localization to chromatin-bound fraction and splicing activity, suggesting SAFB1 could tether FUS to chromatin compartment thorough N-terminal DNA-binding motif. Moreover, FUS interacts with another nuclear matrix-associated protein, Matrin3.

  7. A molecular docking and dynamics study concluded that R521C and R521H mutations in FUS result in weak binding with Karyopherin-beta2 leading to amyotrophic lateral sclerosis.

  8. both FUS and TDP43 (show TARDBP ELISA Kits) colocalize with active RNA polymerase II at sites of DNA damage along with the DNA damage repair protein, BRCA1, and FUS and TDP43 (show TARDBP ELISA Kits) participate in the prevention or repair of R loop-associated DNA damage, a manifestation of aberrant transcription and/or RNA processing

  9. FUS mutations were significantly more common among mainland Chinese patients than those among Caucasian populations (p=6.8x10-3). The high frequency of FUS mutations in FALS and SALS in mainland China is another genetic feature distinct from Caucasians.

  10. The impairment of PARP (show COL11A2 ELISA Kits)-dependent DNA damage response (DDR (show DDR1 ELISA Kits)) signaling due to mutations in the FUS nuclear localization sequence induces additional cytoplasmic FUS mislocalization which in turn results in neurodegeneration and FUS aggregate formation in amyotrophic lateral sclerosis.

Mouse (Murine) Fused in Sarcoma (FUS) interaction partners

  1. FUS and the ELAV-like proteins ELAVL4 and ELAVL1 control SynGAP mRNA stability in a 3'UTR length-dependent manner, resulting in the stable expression of the alternatively spliced SynGAP isoform alpha2.

  2. These two proteins were up-regulated in both HD and FUS/TLS heterozygote mice.

  3. Study established that Fus1 (show TUSC2 ELISA Kits) KO mice suffer from the age-related hearing loss (ARHL) of strial origin, making this model a valuable tool for studying mitochondrial/oxidative mechanisms of age-related hearing decline. The model describes the phenotype of premature hearing loss of strial etiology based on Fus1 (show TUSC2 ELISA Kits) loss-mediated mitochondrial dysfunction, and identify the target cells and tissues in the inner ear.

  4. Authors found that FUS, EWS (show EWSR1 ELISA Kits) and TAF15 expression is differentially regulated during brain development, both in time and in space. In particular, this study identifies a fine-tuned regulation of FUS and EWS (show EWSR1 ELISA Kits) during neuronal differentiation.

  5. Study characterizes a heterozygous knock-in mouse model of ALS and demonstrates that mutations in FUS result in a toxic gain of function leading to motor neuron disease through cell autonomous and non-cell autonomous mechanisms; shows that mutant FUS triggers toxic events in both motor neurons and neighboring cells to elicit motor neuron disease.

  6. FUS-induced reductions to ER-mitochondria associations and are linked to activation of glycogen synthase kinase-3beta (GSK-3beta), a kinase already strongly associated with ALS/FTD (show FTL ELISA Kits).

  7. our findings indicate that cytoplasmic FUS mislocalization not only leads to nuclear loss of function, but also triggers motor neuron death through a toxic gain of function within motor neurons.

  8. The data of this study support the notion that expression of cytoplasmically mislocalized FUS with compromised RNA-binding capacity causes particularly prominent and harmful FUS pathology in the mouse nervous system.

  9. These results highlight the pivotal role of FUS in regulating GluA1 (show GRIA1 ELISA Kits) mRNA stability, post-synaptic function and fronto-temporal lobar degeneration-like animal behaviors.

  10. these studies establish potentially converging disease mechanisms in amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy, with ALS-causative mutants acquiring properties representing both gain and loss of function.

FUS Antigen Profile

Antigen Summary

This gene encodes a multifunctional protein component of the heterogeneous nuclear ribonucleoprotein (hnRNP) complex. The hnRNP complex is involved in pre-mRNA splicing and the export of fully processed mRNA to the cytoplasm. This protein belongs to the FET family of RNA-binding proteins which have been implicated in cellular processes that include regulation of gene expression, maintenance of genomic integrity and mRNA/microRNA processing. Alternative splicing results in multiple transcript variants. Defects in this gene result in amyotrophic lateral sclerosis type 6.

Gene names and symbols associated with Fused in Sarcoma (FUS) ELISA Kits

  • FUS RNA binding protein (FUS) antibody
  • fused in sarcoma (Fus) antibody
  • FUS RNA binding protein (Fus) antibody
  • fused in sarcoma (FUS) antibody
  • ALS6 antibody
  • D430004D17Rik antibody
  • D930039C12Rik antibody
  • ETM4 antibody
  • FUS/TLS antibody
  • Fus1 antibody
  • HNRNPP2 antibody
  • POMP75 antibody
  • Tls antibody

Protein level used designations for Fused in Sarcoma (FUS) ELISA Kits

75 kDa DNA-pairing protein , RNA-binding protein FUS , fus-like protein , fusion gene in myxoid liposarcoma , heterogeneous nuclear ribonucleoprotein P2 , oncogene FUS , oncogene TLS , translocated in liposarcoma protein , fusion, derived from t(12;16) malignant liposarcoma , hnRNP P2 , pigpen protein , protein pigpen , translocated in liposarcoma , fusion , pigpen , fusion (involved in t(12;16) in malignant liposarcoma) , 16) in malignant liposarcoma) , 16) malignant liposarcoma , fusion (involved in t(12 , fusion, derived from t(12

GENE ID SPECIES
2521 Homo sapiens
233908 Mus musculus
414144 Gallus gallus
280796 Bos taurus
317385 Rattus norvegicus
479778 Canis lupus familiaris
Selected quality suppliers for FUS (FUS) ELISA Kits
Did you look for something else?