Phone:
+1 877 302 8632
Fax:
+1 888 205 9894 (Toll-free)
E-Mail:
orders@antibodies-online.com

Genome Polyprotein Proteins

(Genome Polyprotein (LOC100493440))
Capsid protein C: Plays a role in virus budding by binding to the cell membrane and gathering the viral RNA into a nucleocapsid that forms the core of a mature virus particle. During virus entry, may induce genome penetration into the host cytoplasm after hemifusion induced by the surface proteins. Can migrate to the cell nucleus where it modulates host functions. {ECO:0000250|UniProtKB:P17763}. Capsid protein C: Inhibits RNA silencing by interfering with host Dicer. {ECO:0000269|PubMed:27849599}. Peptide pr: Prevents premature fusion activity of envelope proteins in trans-Golgi by binding to envelope protein E at pH6.0. After virion release in extracellular space, gets dissociated from E dimers. {ECO:0000250|UniProtKB:P17763}. Protein prM: Acts as a chaperone for envelope protein E during intracellular virion assembly by masking and inactivating envelope protein E fusion peptide. prM is the only viral peptide matured by host furin in the trans-Golgi network probably to avoid catastrophic activation of the viral fusion activity in acidic Golgi compartment prior to virion release. prM-E cleavage is inefficient, and many virions are only partially matured. These uncleaved prM would play a role in immune evasion. {ECO:0000250|UniProtKB:P17763}. Small envelope protein M: May play a role in virus budding. Exerts cytotoxic effects by activating a mitochondrial apoptotic pathway through M ectodomain. May display a viroporin activity. {ECO:0000250|UniProtKB:P17763}. Envelope protein E: Binds to host cell surface receptor and mediates fusion between viral and cellular membranes. Envelope protein is synthesized in the endoplasmic reticulum in the form of heterodimer with protein prM. They play a role in virion budding in the ER, and the newly formed immature particule is covered with 60 spikes composed of heterodimer between precursor prM and envelope protein E. The virion is transported to the Golgi apparatus where the low pH causes dissociation of PrM-E heterodimers and formation of E homodimers. prM-E cleavage is inefficient, and many virions are only partially matured. These uncleaved prM would play a role in immune evasion. {ECO:0000250|UniProtKB:P17763}. Non-structural protein 1: Involved in immune evasion, pathogenesis and viral replication. Once cleaved off the replication cycle, the plasma membrane and the extracellular compartment. Essential for viral replication. Required for formation of the replication complex and recruitment of other non- structural proteins to the ER-derived membrane structures. Excreted as a hexameric lipoparticle that plays a role against host immune response. Antagonizing the complement function. Binds to the host macrophages and dendritic cells. Inhibits signal transduction originating from Toll-like receptor 3 (TLR3). {ECO:0000250|UniProtKB:Q9Q6P4, ECO:0000269|PubMed:9371625}. Non-structural protein 2A: Component of the viral RNA replication complex that functions in virion assembly and antagonizes the host immune response. {ECO:0000250|UniProtKB:P17763}. Serine protease subunit NS2B: Required cofactor for the serine protease function of NS3. May have membrane-destabilizing activity and form viroporins (By similarity). {ECO:0000250|UniProtKB:P17763, ECO:0000255|PROSITE- ProRule:PRU00859}. Serine protease NS3: Displays three enzymatic protease, in association with NS2B, performs its autocleavage and NS2A-NS2B, NS2B-NS3, NS3-NS4A, NS4A-2K and NS4B-NS5. NS3 RNA helicase binds RNA and unwinds dsRNA in the 3' to 5' direction. Also plays a role in virus assembly (PubMed:18199634). {ECO:0000255|PROSITE-ProRule:PRU00860, ECO:0000269|PubMed:18199634}. Non-structural protein 4A: Regulates the ATPase activity of the NS3 helicase activity. NS4A allows NS3 helicase to conserve energy during unwinding. {ECO:0000250|UniProtKB:Q9Q6P4}. Peptide 2k: Functions as a signal peptide for NS4B and is required for the interferon antagonism activity of the latter. {ECO:0000250|UniProtKB:P17763}. Non-structural protein 4B: Induces the formation of ER- derived membrane vesicles where the viral replication takes place. Inhibits interferon (IFN)-induced host STAT1 phosphorylation and nuclear translocation, thereby preventing the establishment of cellular antiviral state by blocking the IFN-alpha/beta pathway (PubMed:15956546). {ECO:0000250|UniProtKB:Q9Q6P4, ECO:0000269|PubMed:15956546}. RNA-directed RNA polymerase NS5: Replicates the viral (+) and (-) RNA genome, and performs the capping of genomes in the cytoplasm (PubMed:19850911). NS5 methylates viral RNA cap at guanine N-7 and ribose 2'-O positions (PubMed:19850911). Besides its role in RNA genome replication, also prevents the establishment of cellular antiviral state by blocking the interferon-alpha/beta (IFN-alpha/beta) signaling pathway (PubMed:25211074). IFN-I induces binding of NS5 to host IFN- activated transcription factor STAT2, preventing its transcriptional activity. Host TRIM23 is the E3 ligase that interacts with and polyubiquitinates NS5 to promote its binding to STAT2 and trigger IFN-I signaling inhibition (PubMed:25211074). {ECO:0000269|PubMed:19850911, ECO:0000269|PubMed:25211074}.
Genome Polyprotein (LOC100493440) (AA 2-330) protein (His tag) (ABIN1660868)

LOC100493440 Origin: Coxsackie A Virus Host: Yeast Recombinant > 90 % ELISA

Genome Polyprotein (LOC100493440) (AA 2-332) protein (His tag) (ABIN1667326)

LOC100493440 Origin: Coxsackie B Virus Host: Yeast Recombinant > 90 % ELISA

Genome Polyprotein Proteins by Origin

Find Genome Polyprotein Proteins for a variety of species such as anti-Coxsackie A Virus Genome Polyprotein, anti-Coxsackie B Virus Genome Polyprotein. The species listed below are among those available. Click on a link to go to the corresponding products.

Genome Polyprotein Proteins by Source

Here you will find Genome Polyprotein Proteins proteins organized by several key sources. By clicking on a link, you can access the products. For additional sources, please use our search function.

Genome Polyprotein Proteins by Protein Type

Here you can find Genome Polyprotein Proteins proteins categorized by available protein types. Additional protein types can be located using our search function.

Genome Polyprotein Proteins by Application

Find Genome Polyprotein Proteins validated for a specific application such as ELISA. Some of the available applications are listed below. Click on a link to go to the corresponding products.

Popular Genome Polyprotein Proteins

Product
Reactivity
Source
Validations
Cat. No.
Quantity
Datasheet
Reactivity Coxsackie A Virus
Source Yeast
Validations
Cat. No. ABIN1660868
Quantity 1 mg
Datasheet Datasheet
Reactivity Coxsackie B Virus
Source Yeast
Validations
Cat. No. ABIN1667326
Quantity 1 mg
Datasheet Datasheet

Latest Publications for our Genome Polyprotein Proteins

Lee, Monroe, Rueckert: "Role of maturation cleavage in infectivity of picornaviruses: activation of an infectosome." in: Journal of virology, Vol. 67, Issue 4, pp. 2110-22, (1993) (PubMed).

Callahan, Mizutani, Colonno: "Molecular cloning and complete sequence determination of RNA genome of human rhinovirus type 14." in: Proceedings of the National Academy of Sciences of the United States of America, Vol. 82, Issue 3, pp. 732-6, (1985) (PubMed).

Stanway, Hughes, Mountford, Minor, Almond: "The complete nucleotide sequence of a common cold virus: human rhinovirus 14." in: Nucleic acids research, Vol. 12, Issue 20, pp. 7859-75, (1984) (PubMed).

Aliases for Genome Polyprotein Proteins

JEV polyprotein (flavivirus polyprotein gene) Proteins
polyprotein precursor (YFVgp1) Proteins
Genome polyprotein (flavivirus polyprotein gene) Proteins
You are here:
Support