Phone:
+1 877 302 8632
Fax:
+1 888 205 9894 (Toll-free)
E-Mail:
orders@antibodies-online.com

GFP antibody

The Goat Polyclonal anti-GFP antibody has been validated for WB, ELISA and FM. It is suitable to detect GFP in samples from Aequorea victoria. There are 178+ publications available.
Catalog No. ABIN100085

Quick Overview for GFP antibody (ABIN100085)

Target

See all GFP Antibodies
GFP (Green Fluorescent Protein (GFP))

Reactivity

  • 185
  • 15
  • 11
  • 9
  • 9
  • 8
  • 5
  • 5
  • 5
Aequorea victoria

Host

  • 85
  • 68
  • 35
  • 14
  • 9
  • 5
  • 5
  • 1
  • 1
Goat

Clonality

  • 118
  • 101
Polyclonal

Conjugate

  • 96
  • 13
  • 10
  • 10
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
This GFP antibody is un-conjugated

Application

  • 162
  • 80
  • 70
  • 50
  • 48
  • 43
  • 41
  • 25
  • 16
  • 13
  • 13
  • 13
  • 13
  • 11
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
Western Blotting (WB), ELISA, Fluorescence Microscopy (FM)
  • Key Features

    • Polyclonal, unconjugated GFP antibody for reliable detection of GFP and its variants.
    • Validated for Fluorescence Microscopy, ELISA, Western Blotting
    • High Quality GFP antibody, cited in more than 177 PubMed References.
    • Available in 10 µl and 100 µl quantities.

    Purpose

    Goat Anti-GFP is ideal for western blotting, ELISA, Immunohistochemistry and IP.

    Specificity

    Assay by immunoelectrophoresis resulted in a single precipitin arc against anti-Goat Serum and purified and partially purified Green Fluorescent Protein (Aequorea victoria). No reaction was observed against Human, Mouse or Rat serum proteins.

    Cross-Reactivity (Details)

    wt, rGFP, eGFP

    Characteristics

    Anti-GFP is designed to detect GFP and its variants.

    Purification

    GFP antibody was prepared from monospecific antiserum by immunoaffinity chromatography using Green Fluorescent Protein (Aequorea victoria) coupled to agarose beads followed by solid phase adsorption(s) to remove any unwanted reactivities.

    Sterility

    Sterile filtered

    Immunogen

    The immunogen is a Green Fluorescent Protein (GFP) fusion protein corresponding to the full length amino acid sequence (246aa) derived from the jellyfish Aequorea victoria.
    Immunogentype: Recombinant

    Isotype

    IgG

    Product Specific Information

    What can the GFP antibody ABIN100085 be used for? This unconjugated, polyclonal GFP antibody has been developed to detect GFP and derivatives. It reliably detects recombinant and enhanced variants of the protein in addition to wild-type GFP. The Goat GFP antibody has been validated for Western blot, immunofluorescence microscopy and ELISA. Use our GFP antibody to detect GFP by direct antigen binding with sandwich or capture ELISA. Detect GFP by fluorescence microscopy in prokaryotic and eukaryotic expression systems, for example in E.coli or CHO cells. Use a fluorochrome conjugate for this purpose, which again leads to a significant enhancement of the signal provided by the natural fluorescence of GFP. For immunoblotting, use either peroxidase or alkaline phosphatase conjugated polyclonal GFP antibody to detect GFP or GFP-containing proteins on Western blots.

    What validation data is available for this GFP antibody? The GFP antibody has been used in more than 177 publications to date, which are listed below and can be viewed at Pubmed. More than 14 Product images illustrate performance in western blot and fluorescence microscopy.

    What is the function of GFP? GFP, the green fluorescent protein, is a fluorescent protein originally isolated from the jellyfish Aequorea victoria. It emits green light of wavelength 509nm when excited with blue light. GFP is widely used in cell research. It allows proteins labeled with GFP to be visualized in living cells, allowing a wide range of investigations.

  • Application Notes

    ELISA : 1:10,000 - 1:30,000
    IF Microscopy : 1:500
    Western Blot : 1:1,000 - 1:10,000
    Immunohistochemistry: 1:200 - 1:1,000
    ImmunoPrecipitation: Yes

    Comment

    This antibody can be used to detect GFP by ELISA (sandwich or capture) for the direct binding of antigen and recognizes wild type, recombinant and enhanced forms of GFP. Biotin conjugated polyclonal anti-GFP used in a sandwich ELISA is well suited to titrate GFP in solution using this antibody in combination with monoclonal anti-GFP (ABIN129564) using either form of the antibody as the capture or detection antibody. However, use the monoclonal form only for the detection of wild type or recombinant GFP as this form does not sufficiently detect 'enhanced' GFP. The detection antibody is typically conjugated to biotin and subsequently reacted with streptavidin-HRP (ABIN964537).
    Fluorochrome conjugated polyclonal anti-GFP can be used to detect GFP by immunofluorescence microscopy in prokaryotic (E.coli) and eukaryotic (CHO cells) expression systems and detects GFP containing inserts. Significant amplification of signal is achieved using fluorochrome conjugated polyclonal anti-GFP relative to the fluorescence of GFP alone.
    For immunoblotting use either alkaline phosphatase or peroxidase conjugated polyclonal anti-GFP to detect GFP or GFP-containing proteins on western blots. Researchers should determine optimal titers for applications.

    Restrictions

    For Research Use only
  • Format

    Liquid

    Concentration

    1.08 mg/mL

    Buffer

    0.02 M Potassium Phosphate, 0.15 M Sodium Chloride, pH 7.2, 0.01% (w/v) Sodium Azide

    Preservative

    Sodium azide

    Precaution of Use

    This product contains sodium azide: a POISONOUS AND HAZARDOUS SUBSTANCE which should be handled by trained staff only.

    Handling Advice

    Avoid cycles of freezing and thawing.

    Storage

    -20 °C

    Storage Comment

    Store GFP antibody at -20° C prior to opening. Aliquot contents and freeze at -20° C or below for extended storage. Avoid cycles of freezing and thawing. Centrifuge product if not completely clear after standing at room temperature. This product is stable for several weeks at 4° C as an undiluted liquid. Dilute only prior to immediate use.
  • Lapraz, Boutres, Fixary-Schuster, De Queiroz, Plaçais, Cerezo, Besse, Préat, Noselli: "Asymmetric activity of NetrinB controls laterality of the Drosophila brain." in: Nature communications, Vol. 14, Issue 1, pp. 1052, (2023) (PubMed).

    Cone, Hurwitz, Lee, Yuan, Zhou, Li, Meckes: "Alix and Syntenin-1 direct amyloid precursor protein trafficking into extracellular vesicles." in: BMC molecular and cell biology, Vol. 21, Issue 1, pp. 58, (2020) (PubMed).

    Kim, Kim, Choi, Lee, Lee, Im, Shin, Kim, Hong, Kim, Kim, Sung: "Downregulated miR-18b-5p triggers apoptosis by inhibition of calcium signaling and neuronal cell differentiation in transgenic SOD1 (G93A) mice and SOD1 (G17S and G86S) ALS patients." in: Translational neurodegeneration, Vol. 9, Issue 1, pp. 23, (2020) (PubMed).

    Saegusa, Hosoya, Nishiyama, Saeki, Fujimoto, Okano, Fujioka, Ogawa: "Low-dose rapamycin-induced autophagy in cochlear outer sulcus cells." in: Laryngoscope investigative otolaryngology, Vol. 5, Issue 3, pp. 520-528, (2020) (PubMed).

    Nkosi, Sun, Duke, Patel, Surapaneni, Singh, Meckes: "Epstein-Barr Virus LMP1 Promotes Syntenin-1- and Hrs-Induced Extracellular Vesicle Formation for Its Own Secretion To Increase Cell Proliferation and Migration." in: mBio, Vol. 11, Issue 3, (2020) (PubMed).

    Rayaprolu, Gao, Xiao, Ramesha, Weinstock, Shah, Duong, Dammer, Webster, Lah, Wood, Betarbet, Levey, Seyfried, Rangaraju: "Flow-cytometric microglial sorting coupled with quantitative proteomics identifies moesin as a highly-abundant microglial protein with relevance to Alzheimer's disease." in: Molecular neurodegeneration, Vol. 15, Issue 1, pp. 28, (2020) (PubMed).

    Lee, Hanchate, Kondoh, Tong, Kuang, Spray, Ye, Buck: "A psychological stressor conveyed by appetite-linked neurons." in: Science advances, Vol. 6, Issue 12, pp. eaay5366, (2020) (PubMed).

    Chen, Mohammad, Pazdernik, Huang, Bowman, Tycksen, Schedl: "GLP-1 Notch-LAG-1 CSL control of the germline stem cell fate is mediated by transcriptional targets lst-1 and sygl-1." in: PLoS genetics, Vol. 16, Issue 3, pp. e1008650, (2020) (PubMed).

    Li, Bao, Luo, Yoan, Sullivan, Quintanilla, Wickersham, Lazarus, Shin, Song: "Supramammillary nucleus synchronizes with dentate gyrus to regulate spatial memory retrieval through glutamate release." in: eLife, Vol. 9, (2020) (PubMed).

    Schäfer, Kaisler, Scheller, Kirchhoff, Haghikia, Faissner: "Conditional Deletion of LRP1 Leads to Progressive Loss of Recombined NG2-Expressing Oligodendrocyte Precursor Cells in a Novel Mouse Model." in: Cells, Vol. 8, Issue 12, (2020) (PubMed).

    Lehner, Spitzer, Gehwolf, Wagner, Weissenbacher, Deininger, Emmanuel, Wichlas, Tempfer, Traweger: "Tenophages: a novel macrophage-like tendon cell population expressing CX3CL1 and CX3CR1." in: Disease models & mechanisms, Vol. 12, Issue 12, (2020) (PubMed).

    Ganjam, Bolte, Matschke, Neitemeier, Dolga, Höllerhage, Höglinger, Adamczyk, Decher, Oertel, Culmsee: "Mitochondrial damage by α-synuclein causes cell death in human dopaminergic neurons." in: Cell death & disease, Vol. 10, Issue 11, pp. 865, (2020) (PubMed).

    Bongartz, Gille, Hessenkemper, Mandel, Lewitzky, Feller, Schaper: "The multi-site docking protein Grb2-associated binder 1 (Gab1) enhances interleukin-6-induced MAPK-pathway activation in an SHP2-, Grb2-, and time-dependent manner." in: Cell communication and signaling : CCS, Vol. 17, Issue 1, pp. 135, (2020) (PubMed).

    Javier-Torrent, Marco, Rocandio, Pons-Vizcarra, Janes, Lackmann, Egea, Saura: "Presenilin/γ-secretase-dependent EphA3 processing mediates axon elongation through non-muscle myosin IIA." in: eLife, Vol. 8, (2020) (PubMed).

    Shibata, Iseda, Mitsuhashi, Oka, Shindo, Moritoki, Nagai, Otsubo, Inoue, Sasaki, Akazawa, Takahashi, Schalek, Lichtman, Okano: "Large-Area Fluorescence and Electron Microscopic Correlative Imaging With Multibeam Scanning Electron Microscopy." in: Frontiers in neural circuits, Vol. 13, pp. 29, (2020) (PubMed).

    Turnham, Smith, Kenerson, Omar, Golkowski, Garcia, Bauer, Lau, Sullivan, Langeberg, Ong, Riehle, Yeung, Scott: "An acquired scaffolding function of the DNAJ-PKAc fusion contributes to oncogenic signaling in fibrolamellar carcinoma." in: eLife, Vol. 8, (2020) (PubMed).

    Zibetti, Liu, Wan, Qian, Blackshaw: "Epigenomic profiling of retinal progenitors reveals LHX2 is required for developmental regulation of open chromatin." in: Communications biology, Vol. 2, pp. 142, (2020) (PubMed).

    Kockel, Griffin, Ahmed, Fidelak, Rajan, Gould, Haigney, Ralston, Tercek, Galligani, Rao, Huq, Bhargava, Dooner, Lemmerman, Malusa, Nguyen, Chung, Gregory, Kuwana, Regenold, Wei, Ashton, Dickinson et al.: "An Interscholastic Network To Generate LexA Enhancer Trap Lines in Drosophila. ..." in: G3 (Bethesda, Md.), Vol. 9, Issue 7, pp. 2097-2106, (2020) (PubMed).

    van der Helm, Barnhoorn, de Jonge-Muller, Molendijk, Hawinkels, Coenraad, van Hoek, Verspaget: "Local but not systemic administration of mesenchymal stromal cells ameliorates fibrogenesis in regenerating livers." in: Journal of cellular and molecular medicine, Vol. 23, Issue 9, pp. 6238-6250, (2020) (PubMed).

    Crowther, Lim, Asrican, Albright, Wooten, Yeh, Bao, Cerri, Hu, Ian Shih, Asokan, Song: "An Adeno-Associated Virus-Based Toolkit for Preferential Targeting and Manipulating Quiescent Neural Stem Cells in the Adult Hippocampus." in: Stem cell reports, Vol. 10, Issue 3, pp. 1146-1159, (2019) (PubMed).

  • Target

    GFP (Green Fluorescent Protein (GFP))

    Alternative Name

    GFP

    Background

    Green fluorescent protein is a 27 kDa protein produced from the jellyfish Aequorea victoria, which emits green light (emission peak at a wavelength of 509nm) when excited by blue light. GFP is an important tool in cell biology research. GFP is widely used enabling researchers to visualize and localize GFP-tagged proteins within living cells without the need for chemical staining.
    Synonyms: GFP, Green Fluorescent Protein, GFP antibody, Green Fluorescent Protein antibody, EGFP, enhanced Green Fluorescent Protein, Aequorea victoria, Jellyfish.

    UniProt

    P42212
You are here:
Chat with us!