Phone:
+1 877 302 8632
Fax:
+1 888 205 9894 (Toll-free)
E-Mail:
orders@antibodies-online.com

MAP2 ELISA Kit

MAP2 Reactivity: Human Colorimetric Sandwich ELISA Plasma, Serum, Tissue Homogenate
Catalog No. ABIN455882
  • Target See all MAP2 ELISA Kits
    MAP2 (Microtubule-Associated Protein 2 (MAP2))
    Reactivity
    • 3
    • 3
    • 3
    • 1
    • 1
    • 1
    • 1
    • 1
    • 1
    • 1
    • 1
    • 1
    Human
    Detection Method
    Colorimetric
    Method Type
    Sandwich ELISA
    Application
    ELISA
    Purpose
    This immunoassay kit allows for the in vitro quantitative determination of human microtubule-associated protein 2,MAP-2 concentrations in serum, plasma , tissue homogenates and other biological fluids.
    Sample Type
    Plasma, Serum, Tissue Homogenate
    Analytical Method
    Quantitative
    Specificity
    This assay recognizes recombinant and natural human MAP-2.
    Cross-Reactivity (Details)
    No significant cross-reactivity or interference was observed.
    Sensitivity
    < 0.078 ng/mL
    The sensitivity of this assay, or Lower Limit of Detection (LLD) was defined as the lowest detectable concentration that could be differentiated from zero.
    Characteristics
    Homo sapiens,Human,Microtubule-associated protein 2,MAP-2,MAP2
    Components
    Reagent (Quantity): Assay plate (1×20ml), Standard (2), Sample Diluent (1×20ml), Assay Diluent A (1×10ml), Assay Diluent B (1×10ml), Detection Reagent A (1×120 μl), Detection Reagent B (1×120 μl), Wash Buffer(25 x concentrate) (1×30ml), Substrate (1×10ml), Stop Solution (1×10ml), Plate sealer for 96 wells (5), Instruction (1)
    Material not included
    Luminometer. Pipettes and pipette tips. EP tube Deionized or distilled water.
    Featured
    Discover our best selling MAP2 ELISA Kit
    Top Product
    Discover our top product MAP2 ELISA Kit
  • Sample Volume
    100 μL
    Plate
    Pre-coated
    Protocol
    The microtiter plate provided in this kit has been pre-coated with an antibody specific to MAP-2. Standards or samples are then added to the appropriate microtiter plate wells with a biotin-conjugated polyclonal antibody preparation specific for MAP-2 and Avidin conjugated to Horseradish Peroxidase (HRP) is added to each microplate well and incubated. Then a TMB substrate solution is added to each well. Only those wells that contain MAP-2, biotin-conjugated antibody and enzyme-conjugated Avidin will exhibit a change in color. The enzyme-substrate reaction is terminated by the addition of a sulphuric acid solution and the color change is measured spectrophotometrically at a wavelength of 450 nm ± 2 nm. The concentration of MAP-2 in the samples is then determined by comparing the O.D. of the samples to the standard curve.
    Reagent Preparation

    Bring all reagents to room temperature before use. Wash Buffer - If crystals have formed in the concentrate, warm to room temperature and mix gently until the crystals have completely dissolved. Dilute 30 mL of Wash Buffer Concentrate into deionized or distilled water to prepare 750 mL of Wash Buffer. Standard - Reconstitute the Standard with 1.0 mL of Sample Diluent. This reconstitution produces a stock solution of 10 ng/ml. Allow the standard to sit for a minimum of 15 minutes with gentle agitation prior to making serial dilutions (Making serial dilution in the wells directly is not permitted). The undiluted standard serves as the high standard (10 ng/ml). The Sample Diluent serves as the zero standard (0 ng/ml). 4 ng/mL 10 5 2.5 1.25 0.625 0.312 0.156 0 Detection Reagent A and B - Dilute to the working concentration using Assay Diluent A and B (1:100), respectively.

    Sample Collection
    Serum - Use a serum separator tube (SST) and allow samples to clot for 30 minutes before centrifugation for 15 minutes at approximately 1000 × g. Remove serum and assay immediately or aliquot and store samples at -20 C or -80 C . 3 Plasma - Collect plasma using EDTA or heparin as an anticoagulant. Centrifuge samples for 15 minutes at 1000 × g at 2 - 8 C within 30 minutes of collection. Store samples at -20 C or -80 C . Avoid repeated freeze-thaw cycles. Tissue homogenates - The preparation of tissue homogenates will vary depending upon tissue type. For this assay, tissue was rinsed with 1X PBS to remove excess blood, homogenized in 20 mL of 1X PBS and stored overnight at ≤ -20 C After two freeze-thaw cycles were performed to break the cell membranes, the homogenates were centrifuged for 5 minutes at 5000 x g. Remove the supernate and assay immediately or aliquot and store at ≤ -20 C Other biological fluids - Remove particulates by centrifugation and assay immediately or aliquot and store samples at -20 C or -80 C . Avoid repeated freeze-thaw cycles. Note: Serum, plasma and tissue homogenates to be used within 7 days may be stored at 2-8 C , otherwise samples must stored at -20 C ( ≤ 1 months) or -80 C ( ≤ 2 months) to avoid loss of bioactivity and contamination. Avoid freeze-thaw cycles. When performing the assay slowly bring samples to room temperature.
    Assay Procedure

    Allow all reagents to reach room temperature (Please do not dissolve the reagents at 37 C directly.). All the reagents should be mixed thoroughly by gently swirling before pipetting. Avoid foaming. Keep appropriate numbers of strips for 1 experiment and remove extra strips from microtiter plate. Removed strips should be resealed and stored at 4 C until the kits expiry date. Prepare all reagents, working standards and samples as directed in the previous sections. Please predict the concentration before assaying. If values for these are not within the range of the standard curve, users must determine the optimal sample dilutions for their particular experiments.
    1. Add 100 μ l of Standard, Blank, or Sample per well. Cover with the Plate sealer. Incubate for 2 hours at 37 C .
    2. Remove the liquid of each well, don ’ t wash.
    3. Add 100 μ l of Detection Reagent A working solution to each well. Cover with the Plate sealer. Incubate for 1 hour at 37 C . Detection Reagent A working solution may appear cloudy. Warm to room temperature and mix gently until solution appears uniform.
    4. Aspirate each well and wash, repeating the process three times for a total of three washes. Wash by filling each well with Wash Buffer (approximately 400 μ l) using a squirt bottle, multi-channel pipette, manifold dispenser or autowasher. Complete removal of liquid at each step is essential to good performance. After the last wash, remove any remaining Wash Buffer by aspirating or decanting. Invert the plate and blot it against clean paper towels.
    5. Add 100 μ l of Detection Reagent B working solution to each well. Cover with a new Plate sealer. Incubate for 1 hours at 37 C .
    6. Repeat the aspiration/wash as in step
    4. 7. Add 90 μ l of Substrate Solution to each well. Cover with a new Plate sealer. Incubate within 30 minutes at 37 C . Protect from light.
    8. Add 50 μ l of Stop Solution to each well. If color change does not appear uniform, gently tap the plate to ensure thorough mixing.
    9. Determine the optical density of each well at once, using a microplate reader set to 450 nm. 5
    Important Note:
    1. Absorbance is a function of the incubation time. Therefore, prior to starting the assay it is recommended that all reagents should be freshly prepared prior to use and all required strip-wells are secured in the microtiter frame. This will ensure equal elapsed time for each pipetting step, without interruption.
    2. Please carefully reconstitute Standards or working Detection Reagent A and B according to the instruction, and avoid foaming and mix gently until the crystals have completely dissolved. The reconstituted Standards can be used only once. This assay requires pipetting of small volumes. To minimize imprecision caused by pipetting, ensure that pipettors are calibrated. It is recommended to suck more than 10 μ l for once pipetting.
    3. To ensure accurate results, proper adhesion of plate sealers during incubation steps is necessary. Do not allow wells to sit uncovered for extended periods between incubation steps. Once reagents have been added to the well strips, DO NOT let the strips DRY at any time during the assay.
    4. For each step in the procedure, total dispensing time for addition of reagents to the assay plate should not exceed 10 minutes.
    5. To avoid cross-contamination, change pipette tips between additions of each standard level, between sample additions, and between reagent additions. Also, use separate reservoirs for each reagent.
    6. The wash procedure is critical. Insufficient washing will result in poor precision and falsely elevated absorbance readings.
    7. Duplication of all standards and specimens, although not required, is recommended.
    8. Substrate Solution is easily contaminated. Please protect it from light.

    Calculation of Results

    Average the duplicate readings for each standard, control, and sample and subtract the average zero standard optical density. Create a standard curve by reducing the data using computer software capable of generating a four parameter logistic (4-PL) curve-fit. As an alternative, construct a standard curve by plotting the mean absorbance for each standard on the x-axis against the concentration on the y-axis and draw a best fit curve through the 6 points on the graph. The data may be linearized by plotting the log of the MAP-2 concentrations versus the log of the O.D. and the best fit line can be determined by regression analysis. It is recommended to use some related software to do this calculation, such as curve expert 13.0. This procedure will produce an adequate but less precise fit of the data. If samples have been diluted, the concentration read from the standard curve must be multiplied by the dilution factor.

    Restrictions
    For Research Use only
  • Handling Advice
    1. The kit should not be used beyond the expiration date on the kit label.
    2. Do not mix or substitute reagents with those from other lots or sources.
    3. If samples generate values higher than the highest standard, further dilute the samples with the Assay Diluent and repeat the assay. Any variation in standard diluent, operator, pipetting technique, washing technique,incubation time or temperature, and kit age can cause variation in binding.
    4. This assay is designed to eliminate interference by soluble receptors, ligands, binding proteins, and other factors present in biological samples. Until all factors have been tested in the Immunoassay, the possibility of interference cannot be excluded.
    Storage
    4 °C/-20 °C
    Storage Comment
    The Standard, Detection Reagent A, Detection Reagent B and the 96-well strip plate should be stored at -20 °C upon being received. The other reagents can be stored at 4 °C.
  • Target See all MAP2 ELISA Kits
    MAP2 (Microtubule-Associated Protein 2 (MAP2))
    Alternative Name
    MAP2 (MAP2 Products)
    Synonyms
    MAP2A ELISA Kit, MAP2B ELISA Kit, MAP2C ELISA Kit, MAP2R ELISA Kit, Mtap2 ELISA Kit, MAP-2 ELISA Kit, Mtap-2 ELISA Kit, xmap2 ELISA Kit, MGC53131 ELISA Kit, a730034c02 ELISA Kit, zgc:103474 ELISA Kit, zgc:113974 ELISA Kit, microtubule associated protein 2 ELISA Kit, microtubule-associated protein 2 ELISA Kit, microtubule associated protein 2 S homeolog ELISA Kit, MAP2 ELISA Kit, Map2 ELISA Kit, map2.S ELISA Kit, map2 ELISA Kit
    Background
    In cell biology, microtubule-associated proteins (MAPs) are proteins that interact with the microtubules of the cellular cytoskeleton.MAPs bind to the tubulin subunits that make up microtubules to regulate their stability. A large variety of MAPs have been identified in many different cell types, and they have been found to carry out a wide range of functions. These include both stabilizing and destabilizing microtubules, guiding microtubules towards specific cellular locations, cross-linking microtubules and mediating the interactions of microtubules with other proteins in the cell. Within the cell, MAPs bind directly to the tubulin monomers of microtubules. This binding can occur with either polymerized or depolymerized tubulin, and in most case leads to the stabilization of microtubule structure, further encouraging polymerization. Usually, it is the C-terminal domain of the MAP that interacts with tubulin, while the N-terminal domain can bind with cellular vesicles, intermediate filaments or other microtubules. MAP-microtubule binding is regulated through MAP phosphorylation. This is accomplished through the function of the microtubule-affinity-regulating-kinase (MARK) protein. Phosphorylation of the MAP by the MARK causes the MAP to detach from any bound microtubules. This detachment is usually associated with a destabilization of the microtubule causing it to fall apart. In this way the stabilization of microtubules by MAPs is regulated within the cell through phosphorylation. Also found exclusively in nerve cells are the most well studied MAPs, MAP2 (MAP2) and tau (MAPT), which participate in determining the structure of different parts of nerve cells - MAP2 being found mostly in dendrites and tau in the axon. These proteins have a conserved C-terminal microtubule-binding domain and variable N-terminal domains projecting outwards probably interacting with other proteins. MAP2 and tau stabilize microtubules, and thus shift the reaction kinetics in favor of addition of new subunits, accelerating microtubule growth. Both MAP2 and tau have been shown to stabilize microtubules by binding to the outer surface of the microtubule protofilaments. A single study has been suggested that MAP2 and tau bind on the inner microtubule surface on 2 same site in tubulin monomers as the drug Taxol which is used in treating cancer. However, the evidence is in favor of MAP2 and tau binding to the outer microtubule surface and this study has not been confirmed. MAP2 binds in a cooperative manner with many MAP2 proteins binding a single microtubule to promote stabilization. Tau as well helps to stabilize microtubules, however it forms the additional, important function of facilitating bundling of microtubules within the nerve cell.
You are here:
Support