SARS-CoV-2 Proteins

antibodies-online provides a large selection of recombinant proteins for SARS-CoV-2 research including membrane protein, nucleocapsid protein, spike protein, S1 protein mutations, envelope protein, and non-structural proteins. Discover our product portfolio.

Recombinant SARS-CoV-2 Proteins used in Current Research

Product Source Cat. No. Publications Quantity Delivery Relevance ProductGrid: uniqueid
SARS-CoV-2 Spike S2 protein (His tag) HEK-293 Cells ABIN6952319
  • (1)
200 μL 2 to 3 Days element-ABIN6952319
SARS-CoV-2 Spike S1 protein (His tag) HEK-293 Cells ABIN6952427
  • (1)
  • (5)
100 μg 2 to 3 Days element-ABIN6952427
SARS-CoV-2 Spike S1 protein (His tag) HEK-293 Cells ABIN6952318
  • (1)
200 μL 2 to 3 Days element-ABIN6952318
SARS-CoV-2 Spike S1 (Asn354Asp-Mutant), (Asp364Tyr-Mutant), (RBD) protein (His tag) HEK-293 Cells ABIN6952634
  • (1)
  • (3)
100 μg 5 Days element-ABIN6952634
SARS-CoV-2 Spike S1 (Arg408Ile-Mutant), (RBD) protein (His tag) HEK-293 Cells ABIN6952633
  • (1)
  • (3)
100 μg 5 Days element-ABIN6952633
SARS-CoV-2 Spike (Trimer) (Active) protein (His tag) HEK-293 Cells ABIN6952523
  • (5)
50 μg 2 to 3 Days element-ABIN6952523
SARS-CoV-2 Papain-Like Protease (NSP3) protein (His tag) Escherichia coli (E. coli) ABIN6952636
  • (1)
100 μg 5 Days element-ABIN6952636
SARS-CoV-2 Nucleocapsid (SARS-CoV-2 N) (AA 1-419) protein (His tag) HEK-293 Cells ABIN6952454
  • (1)
100 μg 2 to 3 Days element-ABIN6952454
SARS-CoV-2 Envelope (SARS-CoV-2 E) (AA 1-75) protein (His-Avi Tag) Escherichia coli (E. coli) ABIN6952737
  • (1)
100 μg 13 to 14 Days element-ABIN6952737
SARS-CoV-2 IgG Antibody Multiplex ELISA ABIN6953214

NEW: SARS-CoV-2 IgG Multiplex ELISA

High performance COVID-19 antibody testing. Five antigens printed in the same well.
Increased diagnostic performances: 99.6% specificity, 95.9% sensitivity.

See Product Details

SARS-CoV-2 Spike (S1, S2) Protein

CoV uses its spike glycoprotein (S), a main target for neutralization antibody, to bind its receptor, and mediate membrane fusion and virus entry. Each monomer of trimeric S protein is about 180 kDa, and contains two subunits, S1 and S2, mediating attachment and membrane fusion, respectively.6 Below you can find a schematic drawing of SARS-CoV-2 Spike protein: NTD, N-terminal domain. FP, fusion prptide. HR1, heptad repeat 1. HR2, heptad repeat 2. TM, transmembrane domain.16

1D structure of SARS-CoV-2 Spike Protein
Product Source Cat. No. Publications Quantity Delivery Relevance ProductGrid: uniqueid
SARS-CoV-2 Spike S2 protein (His tag) HEK-293 Cells ABIN6952319
  • (1)
200 μL 2 to 3 Days element-ABIN6952319
SARS-CoV-2 Spike S2 (ECD) protein (His tag) Baculovirus infected Insect Cells ABIN6952740
  • (1)
100 μg 13 to 14 Days element-ABIN6952740
SARS-CoV-2 Spike S1 protein (His tag) HEK-293 Cells ABIN6952427
  • (1)
  • (5)
100 μg 2 to 3 Days element-ABIN6952427
SARS-CoV-2 Spike S1 protein (His tag) HEK-293 Cells ABIN6952318
  • (1)
200 μL 2 to 3 Days element-ABIN6952318
SARS-CoV-2 Spike S1 (RBD) protein (His-SUMOstar Tag) Yeast ABIN6953166
  • (5)
1 mg 11 to 14 Days element-ABIN6953166
SARS-CoV-2 Spike S1 (RBD) protein (His tag,MYC tag) Mammalian Cells ABIN6953168
  • (5)
1 mg 11 to 14 Days element-ABIN6953168
SARS-CoV-2 Spike S1 (Active) protein (His tag) HEK-293 Cells ABIN6952736
  • (2)
100 μg 13 to 14 Days element-ABIN6952736
SARS-CoV-2 Spike protein (His tag) HEK-293 Cells ABIN6952426
  • (5)
100 μg 2 to 3 Days element-ABIN6952426
SARS-CoV-2 Spike (Trimer) protein (rho-1D4 tag) HEK-293 Cells ABIN6952670
  • (2)
100 μg 6 to 7 Days element-ABIN6952670
SARS-CoV-2 Spike (Trimer) (Active) protein (His tag) HEK-293 Cells ABIN6952523
  • (5)
50 μg 2 to 3 Days element-ABIN6952523

Click here to see all SARS-CoV-2 Spike Protein Products

Mutations of SARS-CoV-2 S1 Protein

Genomic mutations play a key role in propagation of SARS-COV-2 and virus in general. They may facilitate infection and pose an additional challenge for the detection by the host cell. This turns them into important research targets especially in the context of vaccine and drug design.

The mutation D614G (Asp614Gly) has become dominant in the european region indicating a fitness advantage relative to the original Wuhan strain that enables more rapid spread. Several recent studies indicate that the D614G mutation diminishes the interaction between the S1 and S2 units, facilitating the shedding of S1 from viral-membrane-bound S2. This leads to an increase of total S protein incorporated into the virion and therefore more stable virus particles.10,11,12 We also offer SARS-CoV-2 S protein D614G mutant in a trimeric form, facilitating researchers for more detailed virological and immunological studies on the biological effect of the mutation.

Besides D614G, several other mutations have been discovered. The mutations V367F (Val367Phe), N354D (Asn354Asp), W436R (Trp436Arg) or V483A (Val483Ala) of the S1 protein have been shown to bind with higher affinity to ACE2.13,14 R408I (Arg408Ile) on the other hand potentially reduce the ACE2 binding affinity.15

The available protein products are listed below. In case of any question please call our PhD customer support.

Product Source Cat. No. Publications Quantity Delivery Relevance ProductGrid: uniqueid
SARS-CoV-2 Spike S1 (RBD), (Val483Ala-Mutant) protein (His tag) HEK-293 Cells ABIN6953173
  • (4)
100 μg 5 Days element-ABIN6953173
SARS-CoV-2 Spike S1 (RBD), (Val367Phe-Mutant) protein (His tag) HEK-293 Cells ABIN6952630
  • (1)
  • (3)
100 μg 5 Days element-ABIN6952630
SARS-CoV-2 Spike S1 (RBD), (Trp436Arg-Mutant) protein (His tag) HEK-293 Cells ABIN6952632
  • (3)
100 μg 5 Days element-ABIN6952632
SARS-CoV-2 Spike S1 (Gly476Ser-Mutant), (RBD) protein (His tag) HEK-293 Cells ABIN6953174
  • (4)
100 μg 5 Days element-ABIN6953174
SARS-CoV-2 Spike S1 (Asp614Gly-Mutant) protein (His tag) HEK-293 Cells ABIN6953175
  • (4)
100 μg 5 Days element-ABIN6953175
SARS-CoV-2 Spike S1 (Asn354Asp-Mutant), (RBD) protein (His tag) HEK-293 Cells ABIN6952631
  • (1)
  • (3)
100 μg 5 Days element-ABIN6952631
SARS-CoV-2 Spike S1 (Asn354Asp-Mutant), (Asp364Tyr-Mutant), (RBD) protein (His tag) HEK-293 Cells ABIN6952634
  • (1)
  • (3)
100 μg 5 Days element-ABIN6952634
SARS-CoV-2 Spike S1 (Arg408Ile-Mutant), (RBD) protein (His tag) HEK-293 Cells ABIN6952633
  • (1)
  • (3)
100 μg 5 Days element-ABIN6952633
SARS-CoV-2 Spike (Asp614Gly-Mutant), (Trimer) protein (His tag) HEK-293 Cells ABIN6953171
50 μg 2 to 3 Days element-ABIN6953171

SARS-CoV-2 Nucleocapsid (N) Protein

The nucleocapsid protein is an important structural protein for the coronaviruses. It is highly abundant in the viruses. Its function involves entering the host cell, binding to the viral RNA genome, and forms the ribonucleoprotein core.(7) N protein contains two distinct RNA-binding domains (NTD and CTD) linked by a poorly structured linkage region containing a serine/arginine-rich (SR-rich) domain.

Product Source Cat. No. Publications Quantity Delivery Relevance ProductGrid: uniqueid
SARS-CoV-2 Nucleocapsid (SARS-CoV-2 N) (AA 1-419) Protein Mammalian Cells ABIN6953163
  • (2)
1 mg 11 to 14 Days element-ABIN6953163
SARS-CoV-2 Nucleocapsid (SARS-CoV-2 N) (AA 1-419) Protein Escherichia coli (E. coli) ABIN6952674
  • (1)
50 μg 12 to 14 Days element-ABIN6952674
SARS-CoV-2 Nucleocapsid (SARS-CoV-2 N) (AA 1-419) protein (His tag) Escherichia coli (E. coli) ABIN6953160
  • (4)
1 mg 11 to 14 Days element-ABIN6953160
SARS-CoV-2 Nucleocapsid (SARS-CoV-2 N) (AA 1-419) protein (His tag) Escherichia coli (E. coli) ABIN6952312
100 μg 2 to 3 Days element-ABIN6952312
SARS-CoV-2 Nucleocapsid (SARS-CoV-2 N) (AA 1-419) protein (His tag) HEK-293 Cells ABIN6952315
200 μL 2 to 3 Days element-ABIN6952315
SARS-CoV-2 Nucleocapsid (SARS-CoV-2 N) (AA 1-419) protein (His tag) Escherichia coli (E. coli) ABIN6952313
1000 μg 2 to 3 Days element-ABIN6952313
SARS-CoV-2 Nucleocapsid (SARS-CoV-2 N) (AA 1-419) protein (His tag) Escherichia coli (E. coli) ABIN6952453
  • (1)
100 μg 2 to 3 Days element-ABIN6952453
SARS-CoV-2 Nucleocapsid (SARS-CoV-2 N) (AA 1-419) protein (His tag) HEK-293 Cells ABIN6952454
  • (1)
100 μg 2 to 3 Days element-ABIN6952454
SARS-CoV-2 Nucleocapsid (SARS-CoV-2 N) (AA 1-419) protein (His tag) HEK-293 Cells ABIN6952469
  • (1)
  • (1)
100 μg 2 to 3 Days element-ABIN6952469
SARS-CoV-2 Nucleocapsid (SARS-CoV-2 N) (AA 1-419) protein (His tag) Escherichia coli (E. coli) ABIN6952501
100 μg 8 to 11 Days element-ABIN6952501
SARS-CoV-2 Nucleocapsid (SARS-CoV-2 N) (AA 1-419) protein (His tag) Escherichia coli (E. coli) ABIN6952496
1 mg 8 to 11 Days element-ABIN6952496
SARS-CoV-2 Nucleocapsid (SARS-CoV-2 N) (AA 1-419) protein (His tag) Escherichia coli (E. coli) ABIN6952783
  • (1)
100 μg 13 to 15 Days element-ABIN6952783
SARS-CoV-2 Nucleocapsid (SARS-CoV-2 N) (AA 1-419) protein (His tag) Escherichia coli (E. coli) ABIN6952822
0.1 mg 2 to 3 Days element-ABIN6952822
SARS-CoV-2 Nucleocapsid (SARS-CoV-2 N) (AA 1-419) protein (His tag) HEK-293 Cells ABIN6952823
0.1 mg 2 to 3 Days element-ABIN6952823
SARS-CoV-2 Nucleocapsid (SARS-CoV-2 N) (AA 1-419) protein (His tag) Escherichia coli (E. coli) ABIN6952938
0.1 mg 2 to 3 Days element-ABIN6952938

SARS-CoV-2 Membrane (M) Protein

The coronavirus membrane (M) protein is the key player in virion assembly. One of its functions is to mediate the incorporation of the spikes into the viral envelope. When expressed alone, it accumulates in the Golgi complex in homomultimeric complexes.

Product Source Cat. No. Publications Quantity Delivery Relevance ProductGrid: uniqueid
SARS-Coronavirus Membrane Protein (SARS-CoV M) (AA 182-216) Protein Escherichia coli (E. coli) ABIN6952858
0.1 mg 2 to 3 Days element-ABIN6952858
SARS-Coronavirus Membrane Protein (SARS-CoV M) Protein Escherichia coli (E. coli) ABIN6952563
200 μg 9 to 11 Days element-ABIN6952563
SARS-Coronavirus Membrane Protein (SARS-CoV M) Protein Escherichia coli (E. coli) ABIN624168
1 mg 6 to 8 Days element-ABIN624168
SARS-Coronavirus Membrane Protein (SARS-CoV M) Protein ABIN1111940
1 mg 9 to 10 Days element-ABIN1111940
SARS-Coronavirus Membrane Protein (SARS-CoV M) protein (His tag) Escherichia coli (E. coli) ABIN6952859
0.05 mg 2 to 3 Days element-ABIN6952859

SARS-CoV-2 Envelope (E) Protein

E protein of SARS-CoV-2 is a 75 amino acids long protein existing in both monomeric and homo-pentameric form. Approximately 20 copies of the protein have been found in the viral particle and previous mutagenesis-based studies demonstrated its pivotal role in the onset and development of the viral infection.9

Product Source Cat. No. Publications Quantity Delivery Relevance ProductGrid: uniqueid
SARS-CoV-2 Envelope (SARS-CoV-2 E) (AA 1-75) protein (GST-His-Tag) Escherichia coli (E. coli) ABIN6952821
0.1 mg 2 to 3 Days element-ABIN6952821
SARS-CoV-2 Envelope (SARS-CoV-2 E) (AA 1-75) protein (His tag) Escherichia coli (E. coli) ABIN6952705
  • (1)
100 μg 5 Days element-ABIN6952705
SARS-CoV-2 Envelope (SARS-CoV-2 E) (AA 1-75) protein (His-Avi Tag) Escherichia coli (E. coli) ABIN6952905
0.1 mg 2 to 3 Days element-ABIN6952905
SARS-CoV-2 Envelope (SARS-CoV-2 E) (AA 1-75) protein (His-Avi Tag) Escherichia coli (E. coli) ABIN6952737
  • (1)
100 μg 13 to 14 Days element-ABIN6952737

SARS-CoV-2 Non-structural Proteins (NSP)

The SARS-CoV-2 genome encodes 16 non-structural proteins (Nsp1-16), four structural proteins, and nine putative accessory factors.(8) NSPs include the various enzymes and transcription factors the virus uses to replicate itself, such as viral protease, RNA replicase and proteins to control the host.

Product Source Cat. No. Publications Quantity Delivery Relevance ProductGrid: uniqueid
SARS-CoV-2 2'-O-Ribose Methyltransferase (NSP16) protein (His tag) Insect Cells ABIN6952577
1 mg 50 Days element-ABIN6952577
SARS-CoV-2 3C-Like Proteinase (NSP5) (3CL-PRO, M-Pro) (AA 1-306) protein (His-Avi Tag) Escherichia coli (E. coli) ABIN6952741
  • (1)
100 μg 13 to 14 Days element-ABIN6952741
SARS-CoV-2 3C-Like Proteinase (NSP5) (3CL-PRO, M-Pro) (AA 1-306) protein (His-Avi Tag) Escherichia coli (E. coli) ABIN6952903
0.1 mg 2 to 3 Days element-ABIN6952903
SARS-CoV-2 3C-Like Proteinase (NSP5) (3CL-PRO, M-Pro) protein (His tag) Insect Cells ABIN6952691
100 μg 20 Days element-ABIN6952691
SARS-CoV-2 Guanine-N7 Methyltransferase (NSP14) (ExoN) protein (His tag) Insect Cells ABIN6952575
1 mg 50 Days element-ABIN6952575
SARS-CoV-2 Helicase (NSP13) (HEL) protein (His tag) Insect Cells ABIN6952696
100 μg 20 Days element-ABIN6952696
SARS-CoV-2 Host Translation Inhibitor Nsp1 (NSP1) protein (His tag) Insect Cells ABIN6952564
1 mg 50 Days element-ABIN6952564
SARS-CoV-2 Host Translation Inhibitor Nsp1 (NSP1) protein (His tag) Escherichia coli (E. coli) ABIN6952638
  • (1)
100 μg 5 Days element-ABIN6952638
SARS-CoV-2 Non-Structural Protein 10 (NSP10) protein (His tag) Insect Cells ABIN6952572
1 mg 50 Days element-ABIN6952572
SARS-CoV-2 Non-Structural Protein 2 (NSP2) protein (His tag) Insect Cells ABIN6952565
1 mg 50 Days element-ABIN6952565
SARS-CoV-2 Non-Structural Protein 4 (NSP4) protein (rho-1D4 tag) Insect Cells ABIN6952566
0.5 mg 50 to 55 Days element-ABIN6952566
SARS-CoV-2 Non-Structural Protein 6 (NSP6) protein (rho-1D4 tag) Insect Cells ABIN6952568
0.5 mg 50 to 55 Days element-ABIN6952568
SARS-CoV-2 Non-Structural Protein 7 (NSP7) (AA 1-83) protein (His tag) Escherichia coli (E. coli) ABIN6952707
  • (1)
100 μg 5 Days element-ABIN6952707
SARS-CoV-2 Non-Structural Protein 7 (NSP7) protein (His tag) Insect Cells ABIN6952692
100 μg 20 Days element-ABIN6952692
SARS-CoV-2 Non-Structural Protein 8 (NSP8) protein (His tag) Insect Cells ABIN6952693
100 μg 20 Days element-ABIN6952693

The role of recombinant Proteins in SARS-CoV-2 Research

Recombinant SARS-CoV-2 proteins are being used as antigens for antibody development, as capture antigens or as standards in assays. They can be used as a positive control in antigen-detecting ELISAs to accurately separate true positive results from potentially false results or as capture antigens for immunoglobin ELISAs The trimeric, full length SARS-CoV-2 Spike protein for example is suitable for assay development and highly useful when studying neutralizing antibodies. In addition SARS-CoV-2 proteins are needed for drug discovery and drug repurposing studies. In the process of drug discovery, functional studies with active proteins are vital to verify the inhibitory effects of the tested substance. NSPs as well as N proteins are in the spotlight as potential targets; their functions and interaction with the host cell are crucial for virus propagation and therefore highly relevant for inhibition strategies. SARS-CoV-2 N protein has been shown to affect the complement system whereas the SARS-CoV-2 NSPSs are responsible for virus replication.

Related Products: full length SARS-CoV-2 Spike protein (ABIN6952670)

Post-translational modifications (PTMs), like glyscosilation, modify proteins as last step of maturation to promote protein folding and improve stability. The glycosylation pattern of the SARS-CoV-2 spike protein provides basic understanding of the viral structure, and is important for the identification of immunogens for vaccine design, especially regarding steric hindrance. The spike glycoprotein exists as a homotrimeric fusion protein. Each of the trimers contains 66 glycosylation sites for host-derived N-linked glycans. In the predominant state of the trimer, one of the RBDs is in an “up” position whereas the other two are in a “down” position. Interaction of S-protein and ACE2 only takes place with one RBD in the “up” position.

SARS-CoV-2 utilizes high mannose as well as complex-type glycans structure on their spike proteins (see below). 1 This leads to a complex surface structures, a challenge for finding interactors and in the generation of neutralizing antibodies (Nabs). The Full length SARS-CoV-2 Spike protein (ABIN6952670) is, like our other active SARS-CoV-2 proteins produced in HEK293-cells. The mammalian expression system is able to mimic complex glycosilation pattern of SARS-CoV-2 and express the homotrimeric fusion protein in its active "up" state (fig.1). The Full length SARS-CoV-2 Spike protein therefore is highly useful when studying neutralizing antibodies.

SARS-CoV-2 spike protein trimer with a single RBD in the up position
Fig. 1: Prefusion SARS-CoV-2 spike protein trimer with a single RBD in the "up" position (yellow; PDB 6VSB)

In a recent Glycobiology article Shajahan et al. performed site-specific quantitative N-linked and O-linked glycan profiling on recombinant SARS-CoV-2 S protein subunit S1 and SARS-CoV-2 S protein subunit S2 through glycoproteomics using high resolution LC-MS/MS. The spike protein is comprised of two protein subunits (S1 and S2), which together possess 22 potential N-glycosylation sites. The group identified 2 unexpected O-glycosylation sites at the receptor binding domain (RBD) of subunit S1.1

Related Products: SARS-CoV-2 Spike Subunit S1 (AA 16-690) protein (His tag) (ABIN6952319) | SARS-CoV-2 Spike Subunit S2 (AA 697-1213) protein (His tag) (ABIN6952319)

The N-glycans on S protein play important roles in proper protein folding and priming by host proteases. Since glycans can shield the amino acid residues and other epitopes from cells and antibody recognition, glycosylation can enable the coronavirus to evade both the innate and adaptive immune responses.2,3,4 The group used recombinant SARS-CoV-2 S1 Protein and SARS-CoV-2 S2 Protein expressed in HEK293 cells and observed partial N-glycan occupancy on 17 out of 22 N-glycosylation sites. High mannose-type (Man5GlcNAc2) sugar chains were implemented as predominant structure across all sites.5

Thr323 and Ser325 were identified as O-glycosylation sites on the S1 subunit of SARS-CoV-2 spike protein through high resolution mass spectrometry glycoproteomic profiling. The residues Thr323 and Ser325 are located at the RBD of the S1 subunit of SARS-CoV-2, and thus the O-glycosylation at this location could play a critical role in viral binding with hACE2 receptors.3


References

  1. Shajahan A et al "Deducing the N- and O- glycosylation profile of the spike protein of novel coronavirus SARS-CoV-2". Glycobiology cwaa042, (2020).
  2. Walls A C et al "Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein". Cell, (2020).
  3. Andersen K G et al "The proximal origin of SARS-CoV-2". Nature Medicine, (2020).
  4. Bagdonaite I et al "Global aspects of viral glycosylation". Glycobiology 443-467, (2020).
  5. Watanabe Y et al "Site-specific analysis of the SARS-CoV-2 glycan shield". BioRxiv 2020.2003.2026.010322, (2020).
  6. Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, Guo L, Guo R, Chen T, Hu J, Xiang Z, Mu Z, Chen X, Chen J, Hu K, Jin Q, Wang J, Qian Z. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020 Mar 27;11(1):1620. doi: 10.1038/s41467-020-15562-9. PMID: 32221306; PMCID: PMC7100515.
  7. Zeng W, Liu G, Ma H, Zhao D, Yang Y, Liu M, Mohammed A, Zhao C, Yang Y, Xie J, Ding C, Ma X, Weng J, Gao Y, He H, Jin T. Biochemical characterization of SARS-CoV-2 nucleocapsid protein. Biochem Biophys Res Commun. 2020 Jun 30;527(3):618-623. doi: 10.1016/j.bbrc.2020.04.136. Epub 2020 Apr 30. PMID: 32416961; PMCID: PMC7190499.
  8. David E. Gordon, Gwendolyn M. Jang, Mehdi Bouhaddou, Jiewei Xu, Kirsten Obernier, Matthew J. O’Meara, Jeffrey Z. Guo, Danielle L. Swaney, Tia A. Tummino, Ruth Huettenhain, Robyn M. Kaake, Alicia L. Richards, Beril Tutuncuoglu, Helene Foussard, Jyoti Batra, N. J. K. A SARS-CoV-2-Human Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug Repurposing. Nature. (2020).
  9. Tilocca B, Soggiu A, Sanguinetti M, Babini G, De Maio F, Britti D, Zecconi A, Bonizzi L, Urbani A, Roncada P. Immunoinformatic analysis of the SARS-CoV-2 envelope protein as a strategy to assess cross-protection against COVID-19. Microbes Infect. 2020 May-Jun;22(4-5):182-187. doi: 10.1016/j.micinf.2020.05.013. Epub 2020 May 21. PMID: 32446902; PMCID: PMC7241347.
  10. Jie Hu et al. The D614G mutation of SARS-CoV-2 spike protein enhances viral infectivity and decreases neutralization sensitivity to individual convalescent sera. bioRxviv (2020).
  11. Korber B. et al.Spike mutation pipeline reveals the emergence of a more transmissible form of SARS-CoV-2. bioRxviv (2020). doi.org/10.1101/2020.04.29.069054.
  12. Lizhou Zhang et al. The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity. bioRxviv (2020). doi.org/10.1101/2020.06.12.148726.
  13. Junxian Ou et al. Emergence of RBD mutations in circulating SARS-CoV-2 strains enhancing the structural stability and human ACE2 receptor affinity of the spike protein. bioRxiv (2020). doi:10.1101/2020.03.15.991844v4
  14. Saha, P. et al.Mutations in Spike Protein of SARS-CoV-2 Modulate Receptor Binding, Membrane Fusion and Immunogenicity: An Insight into Viral Tropism and Pathogenesis of COVID-19. chemRxiv (2020). doi:10.26434/chemrxiv.12320567.v1
  15. Jian Shang, Yushun Wan, Chuming Luo, Gang Ye, Qibin Geng, Ashley Auerbach, Fang Li. Cell entry mechanisms of SARS-CoV-2. Proceedings of the National Academy of Sciences May 2020, 117 (21) 11727-11734; DOI: 10.1073/pnas.2003138117