Phone:
+1 877 302 8632
Fax:
+1 888 205 9894 (Toll-free)
E-Mail:
orders@antibodies-online.com

COVID-19

Categories

Since the initial identification of the novel coronavirus SARS-CoV-2 as causative agent of COVID-19 almost 15.000.000 infections (as of 23 July 2020) have been registered worldwide. Thanks to global research efforts, a picture of the virus biology and its effect in the human host is emerging. We offer a wide variety of high quality products for COVID-19 research. Click on the links below to discover our product portfolio.

SARS-COV-2 Antibodies

S Protein, M Protein, E Protein, N Protein, Neutralizing Abs, CR3022

Explore SARS-CoV-2 Antibodies

SARS-CoV-2 Proteins

Recombinant S Protein, M Protein, E Protein, N Protein, NSPs

Explore SARS-CoV-2 Proteins

SARS-CoV-2 ELISA Kits

IgG / IgM ELISA Kits, N Protein ELISA Kits, S Protein ELISA Kits

Explore SARS-CoV-2 ELISA Kits

SARS-CoV-2 Infection

SARS-CoV-2 primarily infection is initiated when the host cell angiotensin-converting enzyme 2 (ACE2) surface receptor is bound by the virus’ spike (S) protein through its receptor binding domain (RBD). ACE2 is encoded on the X chromosome, which might explain the higher COVID-19 fatality rate in men. Possibly, having two different ACE2 alleles confers some degree of resistance.

Binding of SARS-CoV-2 to ACE2 triggers priming of the trimeric S protein at the polybasic S1/S2 cleavage site by the cell surface-associated transmembrane protease serine 2 (TMPRSS2) and to a lesser degree cathepsin B and L. The S1 ectodomain containing the RBD determines cellular tropism and attachment of the virus to its target cell. The S2 endodomain harbors a transmembrane domain and is involved in virus entry through endocytosis. It also contains a second protease site, the furin-like S2’ cleavage site. Precleavage at this furin-like cleavage site might explain the higher infectivity of SARS-CoV-2 compared to SARS-CoV (which lacks this site).

Featured COVID-19 related Products:

Product
Reactivity
Clonality
Clone
Application
Publications
Cat. No.
Quantity
Relevance
ProductGrid: uniqueid
ReactivityHuman
ClonalityMonoclonal
CloneAC18F
ApplicationFACS, ELISA, WB
Publications
  • (1)
  • collections(2)
Cat. No.ABIN1169449
Quantity100 μg
Relevance
ProductGrid: uniqueidelement-ABIN1169449
ReactivityHuman, Mouse, Rat
ClonalityMonoclonal
CloneGiby-1-4
ApplicationELISA, WB
Publications
  • collections(1)
Cat. No.ABIN1169270
Quantity100 μg
Relevance
ProductGrid: uniqueidelement-ABIN1169270
ReactivitySARS Coronavirus (SARS-CoV), SARS Coronavirus-2 (SARS-CoV-2)
ClonalityPolyclonal
Clone
ApplicationELISA
Publications
  • (3)
  • collections(1)
Cat. No.ABIN1031551
Quantity0.1 mg
Relevance
ProductGrid: uniqueidelement-ABIN1031551
ReactivitySARS Coronavirus-2 (SARS-CoV-2)
ClonalityMonoclonal
Clone1G5
ApplicationGICA, ELISA, WB
Publications
  • collections(1)
Cat. No.ABIN6952768
Quantity100 μg
Relevance
ProductGrid: uniqueidelement-ABIN6952768
ReactivitySARS Coronavirus (SARS-CoV), SARS Coronavirus-2 (SARS-CoV-2)
ClonalityChimeric
CloneCR3022
ApplicationCrys, ELISA, Neut, SPR
Publications
  • (7)
  • collections(2)
Cat. No.ABIN6952547
Quantity200 μg
Relevance
ProductGrid: uniqueidelement-ABIN6952547
ReactivitySARS Coronavirus (SARS-CoV), SARS Coronavirus-2 (SARS-CoV-2)
ClonalityMonoclonal
CloneCR3022
ApplicationCrys, ELISA, Neut, SPR
Publications
  • (8)
  • collections(4)
Cat. No.ABIN6952546
Quantity200 μg
Relevance
ProductGrid: uniqueidelement-ABIN6952546
ReactivityHuman
ClonalityPolyclonal
Clone
ApplicationELISA, WB
Publications
  • collections(1)
Cat. No.ABIN570926
Quantity100 μg
Relevance
ProductGrid: uniqueidelement-ABIN570926

>> See a complete list of our SARS-CoV-2 Spike Antibodies

Viral Replication

Upon entry, the viral positive-sense ssRNA(+) genome is released. Two large polycistronic open reading frames ORF1a and ORF1b at the 5’ end of the genome encode 16 non-structural proteins (NSPs) forming two replicase polyproteins pp1a and pp1b. Nsp3 contains a papain-like protease (PLpro) domain and processes Nsp1-4 of pp1a. The 3C-like main chymotrypsin-like protease (Mpro, 3CLpro, Nsp5) of SARS-CoV-2 digests the remaining proteolytic cleavage sites.

SARS-CoV-2 NSPs

Nsp1 and Nsp2 are thought to play a role in host modulation to suppress an antiviral response. A complex consisting of transmembrane proteins Nsp3, Nsp4, and Nsp6 induces formation of double-membrane vesicles (DMV) improving viral replication through membrane associated replication and affecting autophagy. In addition to its NSPs SARS-CoV-2 recruits host proteins to form a replication and transcription complexes (RTC). Core component for the replication of the ssRNA(+) is the RNA-dependent RNA polymerase (RdRp). It forms the replication complex together with Nsp7 and Nsp8. These serve as primase and generate short RNA primers for the primer-dependent RdRp and increase its processivity. Nsp9 has a preference for ssRNA and is believed to interact with Nsp8 in the replication complex. Nsp13 and Nsp16/Nsp10 have helicase/triphosphatase and methyltransferase activity respectively and cap the nascent viral mRNA. The exonuclease Nsp14 (ExoN) endows the replication machinery with a proofreading function, thus increasing fidelity of SARS-CoV-2 RNA synthesis. The last protein of the replication complex is the uridine-specific endoribonuclease Nsp15 (EndoU).

Once the RTC is assembled, a dsRNA intermediate is synthesized from the genomic ssRNA(+). This intermediate serves as template for the production of subgenome-length RNAs (sgRNA) and new, full-length ssRNA(+) genome. The former are transcribed into the virus’ four structural proteins (N, E, M, and S) and nine accessory proteins encoded in the 3’ section of the genome. The latter is packaged into nucleocapsid phosphoproteins (N protein) and then enveloped by the envelope protein (E protein), the membrane glycoprotein (M protein), and spike protein (S protein) to form new virions.

Featured COVID-19 related Antibody Products:

Product
Reactivity
Clonality
Application
Publications
Cat. No.
Quantity
Relevance
ProductGrid: uniqueid
ReactivitySARS Coronavirus (SARS-CoV), SARS Coronavirus-2 (SARS-CoV-2)
ClonalityPolyclonal
ApplicationELISA
Publications
  • (3)
  • collections(1)
Cat. No.ABIN1031551
Quantity0.1 mg
Relevance
ProductGrid: uniqueidelement-ABIN1031551
ReactivitySARS Coronavirus-2 (SARS-CoV-2)
ClonalityPolyclonal
ApplicationELISA, WB
Publications
Cat. No.ABIN6952904
Quantity0.1 mg
Relevance
ProductGrid: uniqueidelement-ABIN6952904
ReactivitySARS Coronavirus-2 (SARS-CoV-2)
ClonalityPolyclonal
ApplicationELISA, WB
Publications
Cat. No.ABIN6952906
Quantity0.1 mg
Relevance
ProductGrid: uniqueidelement-ABIN6952906
ReactivitySARS Coronavirus-2 (SARS-CoV-2)
ClonalityChimeric
ApplicationGICA, ELISA, WB
Publications
Cat. No.ABIN6952664
Quantity100 μL
Relevance
ProductGrid: uniqueidelement-ABIN6952664
ReactivitySARS Coronavirus-2 (SARS-CoV-2)
ClonalityMonoclonal
ApplicationGICA, ELISA, WB
Publications
  • collections(1)
Cat. No.ABIN6952768
Quantity100 μg
Relevance
ProductGrid: uniqueidelement-ABIN6952768
ReactivitySARS Coronavirus (SARS-CoV), SARS Coronavirus-2 (SARS-CoV-2)
ClonalityMonoclonal
ApplicationCrys, ELISA, Neut, SPR
Publications
  • (8)
  • collections(4)
Cat. No.ABIN6952546
Quantity200 μg
Relevance
ProductGrid: uniqueidelement-ABIN6952546
ReactivitySARS Coronavirus-2 (SARS-CoV-2)
ClonalityChimeric
ApplicationGICA, ELISA
Publications
Cat. No.ABIN6952663
Quantity100 μL
Relevance
ProductGrid: uniqueidelement-ABIN6952663

Featured COVID-19 related Protein Products:

Product
Source
Publications
Cat. No.
Quantity
Relevance
ProductGrid: uniqueid
SourceEscherichia coli (E. coli)
Publications
  • collections(1)
Cat. No.ABIN6952737
Quantity100 μg
Relevance
ProductGrid: uniqueidelement-ABIN6952737
SourceEscherichia coli (E. coli)
Publications
  • collections(1)
Cat. No.ABIN6952738
Quantity100 μg
Relevance
ProductGrid: uniqueidelement-ABIN6952738
SourceHEK-293 Cells
Publications
  • collections(2)
Cat. No.ABIN6952670
Quantity100 μg
Relevance
ProductGrid: uniqueidelement-ABIN6952670
SourceHEK-293 Cells
Publications
  • (1)
  • collections(3)
Cat. No.ABIN6952634
Quantity100 μg
Relevance
ProductGrid: uniqueidelement-ABIN6952634
SourceHEK-293 Cells
Publications
  • (1)
  • collections(5)
Cat. No.ABIN6952427
Quantity100 μg
Relevance
ProductGrid: uniqueidelement-ABIN6952427
SourceHEK-293 Cells
Publications
  • (1)
Cat. No.ABIN6952318
Quantity200 μL
Relevance
ProductGrid: uniqueidelement-ABIN6952318
SourceHEK-293 Cells
Publications
  • (1)
Cat. No.ABIN6952319
Quantity200 μL
Relevance
ProductGrid: uniqueidelement-ABIN6952319

>> See a complete list of all available SARS-CoV-2 NSP Proteins

Need Help? Call our PhD Customer Support!

We help you with finding the right product for your research.

We offer reliable antibodies, kits, proteins, lysates for COVID-19 research.

Contact us via email or phone: (877) 302 8632 (US) or +49 241 95 163 153 (International)

COVID-19

Disease severity in patients is due not only to the viral infection but also the host response. The host’s inflammatory response strongly influences the damage to the airways. In 70% of the fatal COVID-19 cases, the resulting acute respiratory distress syndromes (ARDS) leads directly to respiratory failure. The second-most common cause for fatalities in context with COVID-19 is an uncontrolled systemic inflammatory response driven by overproduction of inflammation markers. This so-called cytokine release syndrome or cytokine storm is an important contributor to ARDS and multiple organ dysfunction syndrome (MODS) causing damage in particular to heart, kidneys, and liver.

SARS-CoV-2 Infection and Inflammatory Response

SARS-CoV-2 primarily replicates in the lower respiratory tract where it causes pneumonia and ARDS. While the virus’ structural and non-structural proteins are mainly tasked with building up the virion and virus replication respectively, at least some of the members of the third group of SARS-CoV-2 proteins, the nine accessory factors (Orf3a-10), have been implicated in driving progression of COVID-19.

SARS-CoV-2 Orf3a induces apoptosis in cell line models and is thought to activate NF-kB and the NLRP3 inflammasome involved in pyroptosis, a highly inflammatory form of apoptosis. Orf8b was shown to induce ER stress and to also activate the NLRP3 inflammasome, as was the SARS-CoV-2 E protein. This suggests that viral infection of airway epithelial cells leads to pyroptosis. Pyroptosis is typically accompanied by the release of proinflammatory cytokines leading to the recruitment of additional immune cells and further amplification of the immune response. In addition, caspase-1 in the NLRP3 inflammasome processes the pro-forms of IL-1 beta and IL-18 into the active forms. Orf7a may also play a role in pathogenesis via its role in virus-induced apoptosis.

The extent of damage to tissue in the lower respiratory tract can be monitored in the early stages of COVID-19 using C-reactive protein (CRP) levels as an indicator for disease severity.

The destruction of the alveolar epithelial cells sets damage-associated molecular patterns (DAMPs) and pathogen‐associated molecular patterns (PAMPs) free, which are detected by pattern‐recognition receptors (PRRs) on alveolar epithelial cells and macrophages. The primary PRRs for viral RNAs are members of the RIG‐I‐like receptor (RLR) family. Upon binding to viral RNA, a conformational change of the RLRs triggers aggregation of MAVS and formation of the MAVS signalosome. The MAVS signalosome triggers IRF3/7 dimerization and activates NF‐κB pathway, leading to the production of type I IFNs, the most important antiviral cytokines, and pro‐inflammatory cytokines IL-6, IFN-gamma, CD46, and CXCL10. The coordinated secretion of pro-inflammatory cytokines and chemokines leads to recruitment of immune cells, in particular CD4+ T helper cells (TH1), CD8+ cytotoxic T cells and monocytes, to mount the defense against the viral infection.

As a type I IFN antagonist, SARS-Cov-2 Orf6 inhibits the IFN response. Orf9b targets the MAVS signalosome for degradation and therefore limits the host cell interferon responses. Orf9c interacts with the mitochondrial electron transport chain which is involved in TLR/IL-1 signaling and regulation of inflammation. Nsp1 suppresses IFN induction and increases CCL5 production, thus contributing to inflammatory processes.

Related Antibodies: CRP, NFKB1, NFKB2, NFkB cRel, p65, RELB

Product
Reactivity
Clonality
Application
Publications
Cat. No.
Quantity
Relevance
ProductGrid: uniqueid
ReactivityHuman
ClonalityMonoclonal
ApplicationEIA, FACS, IHC (p), WB
Publications
  • collections(4)
Cat. No.ABIN1105591
Quantity0.1 mL
Relevance
ProductGrid: uniqueidelement-ABIN1105591
ReactivityHuman, Mouse
ClonalityMonoclonal
ApplicationICC, IHC, ELISA, WB
Publications
  • (2)
  • collections(4)
Cat. No.ABIN968997
Quantity100 μL
Relevance
ProductGrid: uniqueidelement-ABIN968997
ReactivityHuman
ClonalityPolyclonal
ApplicationELISA, FACS, IF
Publications
  • collections(6)
Cat. No.ABIN184887
Quantity100 μg
Relevance
ProductGrid: uniqueidelement-ABIN184887
ReactivityHuman
ClonalityPolyclonal
ApplicationIF, IHC, WB
Publications
  • (2)
  • collections(3)
  • (1)
Cat. No.ABIN6144571
Quantity100 μL
Relevance
ProductGrid: uniqueidelement-ABIN6144571
ReactivityHuman
ClonalityPolyclonal
ApplicationIF, IHC, WB
Publications
  • collections(3)
Cat. No.ABIN3020403
Quantity100 μL
Relevance
ProductGrid: uniqueidelement-ABIN3020403
ReactivityHuman
ClonalityMonoclonal
ApplicationIF, IHC, IP, WB
Publications
  • (1)
  • collections(1)
  • (1)
Cat. No.ABIN6135887
Quantity100 μL
Relevance
ProductGrid: uniqueidelement-ABIN6135887
ReactivityHuman, Mouse
ClonalityPolyclonal
ApplicationChIP, IP, IHC (p), WB
Publications
  • collections(5)
Cat. No.ABIN2855360
Quantity100 μL
Relevance
ProductGrid: uniqueidelement-ABIN2855360

Related ORF Antibodies:

Product
Reactivity
Clonality
Application
Cat. No.
Quantity
Relevance
ProductGrid: uniqueid
ReactivitySARS Coronavirus-2 (SARS-CoV-2)
ClonalityPolyclonal
ApplicationELISA, WB
Cat. No.ABIN6952939
Quantity0.1 mg
Relevance
ProductGrid: uniqueidelement-ABIN6952939
ReactivitySARS Coronavirus-2 (SARS-CoV-2)
ClonalityPolyclonal
ApplicationELISA, WB
Cat. No.ABIN6952940
Quantity0.1 mg
Relevance
ProductGrid: uniqueidelement-ABIN6952940
ReactivitySARS Coronavirus-2 (SARS-CoV-2)
ClonalityPolyclonal
ApplicationELISA, WB
Cat. No.ABIN6952945
Quantity0.1 mg
Relevance
ProductGrid: uniqueidelement-ABIN6952945
ReactivitySARS Coronavirus-2 (SARS-CoV-2)
ClonalityPolyclonal
ApplicationELISA, WB
Cat. No.ABIN6952946
Quantity0.1 mg
Relevance
ProductGrid: uniqueidelement-ABIN6952946
ReactivitySARS Coronavirus-2 (SARS-CoV-2)
ClonalityPolyclonal
ApplicationELISA, WB
Cat. No.ABIN6952948
Quantity0.1 mg
Relevance
ProductGrid: uniqueidelement-ABIN6952948

Related ORF Proteins:

Product
Source
Cat. No.
Quantity
Relevance
ProductGrid: uniqueid
SourceEscherichia coli (E. coli)
Cat. No.ABIN6952944
Quantity0.1 mg
Relevance
ProductGrid: uniqueidelement-ABIN6952944
SourceEscherichia coli (E. coli)
Cat. No.ABIN6952951
Quantity0.1 mg
Relevance
ProductGrid: uniqueidelement-ABIN6952951

Cytokine Release Syndrome – the “Cytokine Storm”

In most cases, a SARS-CoV-2 infection is cleared at this stage by the recruited immune cells and the immune response is downregulated. However, in patients developing severe COVID-19, inflammatory processes do not subside. Instead, IL-6 levels continue to increase and the levels of IL- 2, IL-7, IL-10, TNF-α, G-CSF, CXCL10, CCL2, and CCL3 are also substantially higher in COVID-19 patients. CD4+ and CD8+ T cell numbers are anti-proportional to the levels of TNF-alpha, IL-6, and IL-10 in COVID-19 patients. Expression of the exhaustion markers PD-1 and HAVCR2 are also increased in these cells.

On the other hand, in severe cases of COVID-19 numbers of CD14+CD16+ inflammatory monocytes are increased in peripheral blood. CD14+CD16+ monocytes have also been linked to Kawasaki Disease, a rare acute inflammatory disease of the arteries in young children that has been observed in conjunction with COVID-19 recently. These CD14+CD16+ monocytes are also CD11b+ , CD14+ , CD16+ , CD68+ , CD80+ , CD163+ , CD206+ and secrete IL-6, IL-10 and TNF-alpha, thus further contributing to inflammation.

All these factors contribute to the development of a cytokine release syndrome or cytokine storm, an excessive inflammatory reaction in which cytokines are rapidly produced in large amount in response to an infection. Cytokine storm is considered an important contributor to ARDS and MODS.

Evidence suggests an increased susceptibility to a severe course of COVID-19 due to life style related low-grade inflammation or genetics. These factors can lead to enhanced exposure to DAMPs and further NLRP3 inflammasome activation. One of the DAMPs downstream of NLRP3 inflammasome activation is HMGB1. It is typically found in elevated serum concentrations during inflammatory events and acts as a central mediator of an excessive inflammatory response in case of viral infections. HMGB1 has been proposed to be one of the main contributors to the cytokine storm through a positive feedback loop involving induction of IL-17 production by Th17 cells and the subsequent neutrophil infiltration, leading to further NLRP3 inflammasome activation.

NLRP3 inflammasome dysregulation in COVID-19

The SARS-CoV-2 N protein triggers activation of the lectin pathway of the complement system through interaction with mannose binding lectin (MBL)-associated serine protease (MASP)2. Released soluble N protein dimers interact with MASP-2, further accelerating MASP-2 activation and activation of the complements system. The positive feedback through cell lysis and release of N-protein leads to further increase of pro-inflammatory cytokines and aggravation of the cytokine storm.

In addition to the damaging effect on the alveolar structure, inflammatory cytokines IL-1 and TNF induce increases expression of HA-synthase-2 (HAS2) in CD31+ endothelium, EpCAM+ lung alveolar epithelial cells, and fibroblasts. HAS2 catalyzes polymerization of hyaluronan, a component of the extracellular matrix that can absorb water up to a 1000 times its weight. Accumulation of this liquid jelly in the damaged lungs further limits the gas exchange in the lung, leading to low oxygen saturation of the blood.

Cytokine Storm related Antibodies:

Product
Reactivity
Clonality
Application
Publications
Cat. No.
Quantity
Relevance
ProductGrid: uniqueid
ReactivityHuman, Mouse, Rat
ClonalityPolyclonal
ApplicationIHC, WB
Publications
  • (2)
  • collections(1)
Cat. No.ABIN3021171
Quantity100 μL
Relevance
ProductGrid: uniqueidelement-ABIN3021171
ReactivityCow, Human
ClonalityMonoclonal
ApplicationFACS, IP, WB
Publications
  • (8)
  • collections(1)
Cat. No.ABIN94149
Quantity0.1 mg
Relevance
ProductGrid: uniqueidelement-ABIN94149
ReactivityHuman, Monkey, Mouse
ClonalityMonoclonal
ApplicationICC, FACS, IHC, ELISA, WB
Publications
  • (2)
  • collections(7)
Cat. No.ABIN969505
Quantity0.1 mg
Relevance
ProductGrid: uniqueidelement-ABIN969505
ReactivityHuman
ClonalityPolyclonal
ApplicationELISA
Publications
Cat. No.ABIN185352
Quantity100 μg
Relevance
ProductGrid: uniqueidelement-ABIN185352
ReactivityHuman
ClonalityMonoclonal
ApplicationELISA, WB
Publications
  • collections(1)
Cat. No.ABIN1574139
Quantity40 μg
Relevance
ProductGrid: uniqueidelement-ABIN1574139
ReactivityHuman
ClonalityMonoclonal
ApplicationIA, IHC (fro), FACS, WB
Publications
  • (3)
Cat. No.ABIN2191895
Quantity100 μg
Relevance
ProductGrid: uniqueidelement-ABIN2191895
ReactivityHuman
ClonalityMonoclonal
ApplicationELISA, IF, IHC, IHC (p), WB
Publications
  • collections(1)
Cat. No.ABIN574462
Quantity50 μg
Relevance
ProductGrid: uniqueidelement-ABIN574462
ReactivityHuman, Mouse, Rat
ClonalityMonoclonal
ApplicationELISA, WB
Publications
  • collections(1)
Cat. No.ABIN1169270
Quantity100 μg
Relevance
ProductGrid: uniqueidelement-ABIN1169270
ReactivityHuman, Mouse, Rat
ClonalityPolyclonal
ApplicationWB
Publications
  • collections(2)
Cat. No.ABIN3020881
Quantity100 μL
Relevance
ProductGrid: uniqueidelement-ABIN3020881
ReactivityHuman
ClonalityPolyclonal
ApplicationIF, IHC, WB
Publications
  • (2)
  • collections(5)
Cat. No.ABIN1513098
Quantity100 μg
Relevance
ProductGrid: uniqueidelement-ABIN1513098

Cytokine Storm related ELISA Kits:

Product
Method Type
Sample Type
Detection Method
Publications
Cat. No.
Quantity
Relevance
ProductGrid: uniqueid
Method TypeSandwich ELISA
Sample TypeCell Lysate, Tissue Homogenate
Detection MethodColorimetric
(Pre-coated)
Publications
  • collections(1)
Cat. No.ABIN5665033
Quantity96 tests
Relevance
ProductGrid: uniqueidelement-ABIN5665033
Method TypeSandwich ELISA
Sample TypeCell Culture Supernatant, Plasma, Serum
Detection MethodColorimetric
(Pre-coated)
Publications
Cat. No.ABIN1446064
Quantity96 tests
Relevance
ProductGrid: uniqueidelement-ABIN1446064
Method TypeSandwich ELISA
Sample TypeCell Culture Supernatant, Plasma, Serum
Detection MethodColorimetric
(Pre-coated)
Publications
  • (15)
Cat. No.ABIN1446059
Quantity96 tests
Relevance
ProductGrid: uniqueidelement-ABIN1446059
Method TypeSandwich ELISA
Sample TypeCell Culture Supernatant, Cell Lysate, Plasma, Serum, Tissue Homogenate
Detection MethodColorimetric
(Pre-coated)
Publications
  • (1)
  • collections(4)
Cat. No.ABIN6730879
Quantity96 tests
Relevance
ProductGrid: uniqueidelement-ABIN6730879
Method TypeSandwich ELISA
Sample TypeCell Culture Supernatant, Cell Lysate, Plasma, Serum, Tissue Homogenate
Detection MethodColorimetric
(Pre-coated)
Publications
  • (12)
  • collections(1)
Cat. No.ABIN416245
Quantity96 tests
Relevance
ProductGrid: uniqueidelement-ABIN416245
Method TypeSandwich ELISA
Sample TypeCell Culture Supernatant, Cell Lysate, Plasma, Serum, Tissue Homogenate
Detection MethodColorimetric
(Pre-coated)
Publications
  • (1)
  • collections(4)
Cat. No.ABIN6730906
Quantity96 tests
Relevance
ProductGrid: uniqueidelement-ABIN6730906
Method TypeSandwich ELISA
Sample TypeCell Culture Supernatant, Cell Lysate, Plasma, Serum, Tissue Homogenate
Detection MethodColorimetric
(Pre-coated)
Publications
  • (14)
  • collections(5)
Cat. No.ABIN6574129
Quantity96 tests
Relevance
ProductGrid: uniqueidelement-ABIN6574129
Method TypeSandwich ELISA
Sample TypeCell Culture Supernatant, Cell Lysate, Plasma, Serum, Tissue Homogenate
Detection MethodColorimetric
(Pre-coated)
Publications
  • (25)
  • collections(4)
Cat. No.ABIN6574165
Quantity96 tests
Relevance
ProductGrid: uniqueidelement-ABIN6574165
Method TypeSandwich ELISA
Sample TypeCell Culture Supernatant, Cell Lysate, Plasma, Serum, Tissue Homogenate
Detection MethodColorimetric
(Pre-coated)
Publications
  • (1)
  • collections(4)
Cat. No.ABIN6730878
Quantity96 tests
Relevance
ProductGrid: uniqueidelement-ABIN6730878
Method Type
Sample Type
Detection Method Sterile plate
Publications
Cat. No.ABIN1447108
Quantity96 tests
Relevance
ProductGrid: uniqueidelement-ABIN1447108

Related Information and Products

SARS-CoV-2 Neutralizing Antibodies based on CR3022

SARS-CoV-2 ELISA Kits

SARS-CoV Protein Interactome / poster and products

SARS-CoV-2 RT-PCR Kits and qPCR Kits

SARS-CoV-2 Life Cycle: Stages and Inhibition Targets

Coronavirus HCoV-EMC/2012 Proteome Microarray (ABIN6936258)

Coronavirus Expression Vectors and Cloning Vectors at genomics-online.com.

SARS-CoV-2 Protein Interactome Part.

SARS-CoV-2 Protein Interactome

SARS-CoV-2 Replication Part

SARS-CoV-2 Replication & inhibition

antibodies-online.com: Making the Complex Convenient

300 Coronavirus-related antibodies, proteins, kits and lysates covering all relevant targets and viruses

Extensive filtering options and comprehensive product details leading to the right choice

Trusted Supplier to 10000+ Institutions worldwide

References

    1. Coutard, B. et al. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res. 176, 104742 (2020).
    2. de Wilde, A. H. et al. Host Factors in Coronavirus Replication. in Roles of Host Gene and Non-coding RNA Expression in Virus Infection. Current Topics in Microbiology and Immunology (eds. Tripp, R. A. & Tompkins, S. M.) 1–42 (Springer International Publishing, 2018). doi:10.1007/82_2017_25
    3. Diao, B. et al. Reduction and Functional Exhaustion of T Cells in Patients With Coronavirus Disease 2019 (COVID-19). Front. Immunol. 11, 827 (2020).
    4. Gao, T. et al. Highly pathogenic coronavirus N protein aggravates lung injury by MASP-2- mediated complement over-activation. medRxiv (2020). doi:10.1101/2020.03.29.20041962
    5. Gao, Y. et al. Structure of RNA-dependent RNA polymerase from 2019-nCoV, a major antiviral drug target. bioRxiv 2020.03.16.993386 (2020). doi:10.1101/2020.03.16.993386
    6. Gordon, D. E. et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature (2020). doi:10.1038/s41586-020-2286-9
    7. Hoffmann, Markus; Kleine-Weber, H. et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 181, 1–10 (2020).
    8. Pachetti, M. et al. Emerging SARS‑CoV‑2 mutation hot spots include a novel RNA-dependent- RNA polymerase variant. J. Transl. Med. 18, 1–9 (2020).
    9. Shi, Y. et al. COVID-19 infection: the perspectives on immune responses. Cell Death Differ. (2020). doi:10.1038/s41418-020-0530-3
    10. Tan, C. et al. C‐reactive protein correlates with computed tomographic findings and predicts severe COVID‐19 early. J. Med. Virol. jmv.25871 (2020). doi:10.1002/jmv.25871
    11. Tay, M. et al. The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol. 1–12 (2020). doi:10.1038/s41577-020-0311-8
    12. van den Berg, D. H., te Velde, A. A. Severe COVID-19: NLRP3 Inflammasome Dysregulated. Frontiers in Immunology (2020). doi: 10.3389/fimmu.2020.01580
    13. Wilk, A. et al. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat.Med. (2020). doi:10.1101/2020.04.17.20069930
    14. Wrapp, D. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 367, 1260–1263 (2020).
    15. Yap, J. K. Y. et al. Inflammasomes and Pyroptosis as Therapeutic Targets for COVID-19. Journal of Immunology 205, 307-312(2020).
    16. Zhang, L. et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science. 368, 409 LP – 412 (2020).
    17. Zhang, D. et al. COVID-19 infection induces readily detectable morphological and inflammation-related phenotypic changes in peripheral blood monocytes, the severity of which correlate with patient outcome. medRxiv (2020). doi:10.1101/2020.03.24.20042655
    18. Ziegler-Heitbrock, L. The CD14+ CD16+ blood monocytes: their role in infection and inflammation. J. Leukoc. Biol. 81, 584–592 (2007).
help Support